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h i g h l i g h t s

• The multi-agent systems are Markov switching.
• We consider the time-delay in the feedback controller.
• The controller can be calculated by our results.
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a b s t r a c t

This paper investigates the average consensus problems of the discrete-time Markov
switching linear multi-agent systems (LMAS) with fixed topology and time-delay. Firstly,
we introduce a concept of the average consensus to adapt the stochastic systems. Secondly,
a time-delay switching consensus protocol is proposed. By developing a new signal mode,
the switching signal of the systems and the time-delay signal of the controller can be
merged into one signal. Thirdly, by Lyapunov technique, two LMIs criteria of average
consensus are provided, and they reveal that the consensus of the multi-agent systems
relates to the spectral radius of the Laplacian matrix. Furthermore, by our results and
CCL-type algorithms, we can get the gain matrices. Finally, a numerical example is given to
illustrate the efficiency of our results.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Distributed multi-agent systems have attracted significant attention in the last decade. The consensus problems of the
multi-agent networks are one of the most focused research areas due to its broad applications in many fields including
formation control [1], synchronization [2], flocking [3], sensor networks [4] and so on.

The multi-agent systems consist of the agents which can represent robots, humans or animals. Most research of the
consensus problems assumes that the dynamics of agent is the controller. For this model, there are many results about
continuous-time dynamics [5], discrete-time dynamics [6], first-order dynamics [5], second-order dynamics [7], high-order
dynamics [8] and leader-following consensus [9].

In recent years, the linear multi-agent systems (LMAS) have attracted several researchers, in which the dynamics of
agent is modeled by a linear system. They considered the communication data rate for consensusability [10], the leader-
following consensus [11–14], the observer-based protocols [15], the robust consensus control [16] and the event-triggered
control [17]. Most works of the consensus problems in the LMAS focused on the continuous-time dynamics [12–20]. Results
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about the discrete-time dynamics are less [10,11]. In this paper, we investigate the consensus problems of the discrete-time
LMAS. The dynamics of each agent is discrete-time linear system.

Switching phenomenon widely exists in the real world. Many papers investigated the consensus problems of the multi-
agent systems with switching topology [5,21]. Refs. [11,20,22–25] studied the consensus problems of LMASwith switching
topology. However, to the best of our knowledge, no one studied the consensus problems of Markov switching LMAS. In this
paper, the LMAS is Markov switching, and the controller is also Markov switching. Adapted for Markov switching LMAS, we
introduce a concept of the average consensus, which is generalized from the similar concepts in Ref. [26]. We design the
controller by the state feedback and the switching signal feedback, and assume they have various delays.

In many papers about consensus problems, it is proved that the consensus of the multi-agent systems relates to the
second smallest eigenvalue and the eigenratio (the ratio of the second smallest eigenvalue to the spectral radius) of
the Laplacian matrix. Refs. [5,27] presented the convergence rate of the average consensus over an undirected graph
is determined by the second smallest eigenvalue of the Laplacian matrix. The eigenratio is an important factor for
the consensusability of the multi-agent systems [10]. A larger eigenratio corresponds to better consensusability. By
aforementioned results, we can associate with that the spectral radius of the Laplacianmatrix is also an important factor for
consensus. This is confirmed by our result.

Time-delays are frequently encountered in many practical systems such as engineering, communications and biological
systems. For multi-agent systems, time-delay often occurs in information communication. Therefore, communication delay
is an inevitable problem, and was considered in many articles [5,7,9,19–21,25]. In this paper, the time-delay is also
considered.

Motivated by above, we will solve the consensus problems of Markov switching LMASwith fixed topology in this paper.
The rest of this paper is organized as follows. Section 2 introduces some graph knowledge andproperty of Kronecker product.
Section 3 presents the consensus problems of discrete-time Markov switching LMAS with fixed topology, and defines the
average consensus of the stochastic systems. In Section 4, we give two sufficient conditions of consensus, and analyze the
relation between consensus and the spectral radius of the Laplacianmatrix. Section 5 gives a numerical example to illustrate
the efficiency of our results. Concluding remarks are finally stated in Section 6.

Notation: The following notation will be used throughout this paper. 1 (0) is a compatible dimension vector with all
elements to be one (zero). IN is theN×N-dimensional identitymatrix, and I is the identitymatrix of compatible dimensions.
The notation ∗ always denotes the symmetric block in one symmetric matrix. The transpose of matrix A is denoted by
AT . λmax(A) and λmin(A) denote the maximum eigenvalue and the minimum eigenvalue of A respectively. The shorthand
diag{· · · } denotes the block diagonal matrix. ∥ · ∥ refers to the Euclidean norm for vectors. E(·) stands for the mathematical
expectation operator.⊗ denotes the Kronecker product of matrices. Some properties of Kronecker product are useful in this
paper: (A ⊗ B)T = AT

⊗ BT , (A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD), A ⊗ B + A ⊗ C = A ⊗ (B + C). The Kronecker product of two
positive definite matrices is positive definite.

2. Preliminaries

Let G = (V, E, A) be a graph of order N , where V = {ν1, ν2, . . . , νN} is the set of nodes, E ∈ V × V is the set of
edges, and A = (aij)N×N is the weighted adjacency matrix. The node indexes belong to a finite index set I = {1, 2, . . . ,N}.
(i, j) ∈ E denotes there is an edge connect νi and νj, and νi can receive information from νj. In the following, it is stipulated
that (i, j) ∈ E if and only if aij > 0 and aii = 0 for 0 ≤ i ≤ N . If aij = aji for all i, j ∈ V , G is called an undirected graph. If
there is a sequence of edges (i, i1), (i1, i2), . . . , (ik, j) ∈ E for any two agents i, j ∈ V , G is called a connected graph.

The matrix L = (lij)N×N is the Laplacian matrix of G, where

lij =


−aij i ≠ j

N
k=1,k≠i

aik i = j.

Lemma 1 ([28]). Let G = (V, E, A) be a weighted undirected graph with the Laplacian L, λ1 ≤ · · · ≤ λN be the eigenvalues
of L. If G is connected, 0 = λ1 < λ2 ≤ · · · ≤ λN .

Assumption 1. In this paper, we assume the communication topology is undirected and connected. Then the eigenvalues
of L are 0 = λ1 < λ2 ≤ · · · ≤ λN .

In a multi-agent networks with N agents, the information flow between agents can be described by a graph G =

(V, E, A). The node νi in graph G corresponds to agent i in the networks. (i, j) ∈ E expresses that the information of the
agent j can be spread to agent i.

Let {r(k), k ∈ Z+} be discrete-time Markov chain, with finite state space Υ = {0, 1, . . . , d − 1}. The state transition
matrices of {r(k)} is P = (pij), where pij = Pr{r(k + 1) = j|r(k) = i} ≥ 0, for i, j ∈ Υ , denotes the transition probability
from i to j. In this paper, all systems are defined on a complete probability space (Ω, F , P).
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