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h i g h l i g h t s

• The three wave interaction in a multi-mode environment is studied.
• The analysis is not restricted to slow modulational approximations.
• Abrupt regime transitions arise as a result of the full analysis.
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a b s t r a c t

The present work investigates the breakdown of the modulational approximation in a
multimode extension of the three wave nonlinear interaction. The modulational approach
provides a simplified framework to describe the triplet interaction in regimes where
the carrier frequency is much larger than the modulational frequency. The approach is
frequently stretched to its limits and beyond, and in the present work we argue that those
limits can be in fact quite restrictive. At very small couplingswe show that allmodes exhibit
slow amplitude modulations, but as the coupling increases a transition soon takes place
and the modes jump to a new dynamical regime where none can be any longer seen as
slowlymodulated high-frequency harmonic carriers. Estimates for the critical coupling and
relaxation times can be obtained with proper analysis of the most unstable triplet (Iorra
et al., 2015).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The slow modulational approximation to the dynamics of high-frequency carrier modes has been proven time and time
again as a powerful technique to deal with systems involving the interaction of several degrees-of-freedom. Instead of
describing the oscillatorymodes at their short time or space scales, themodulational approach allows to obtain approximate
governing equations for a smoother varying set of dynamical variables: the amplitudes and phases of the interacting
modes [1,2].

Modulational techniques have been applied to a variety of physical settings, ranging frommechanical waves in solids and
seismicmedia [3], to electromagnetic waves in plasmas, plasma accelerators and free-electron lasers [4–13]. In all cases, the
needed condition for accuracy is that the mode interaction be weak enough that amplitudes and phases indeed change in a
much longer scale than the high-frequency time scale and wavelength spatial scale of the carriers.

The modulational theory has been particularly successful in the study of three wave systems, where energy exchange
involving three modes is possible if parametric instabilities are present. The wave triplet is a cornerstone in the study of
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nonlinear wave interaction and more complex interactive settings can be frequently understood with basis on three wave
partitions [14].

Considering the importance of the three wave interaction, a recent work investigated the behaviour of the triplet
dynamics as the coupling grows beyond the proper validity range for modulational approximations. It has been found
that there exists indeed a critical coupling strength separating modulational and irregular regimes, where in the latter the
amplitudes jump to much larger and much faster oscillations than in the former [15].

While an isolated triplet can well represent cases where resonant conditions favour only three modes at a time, it is
frequently the case that a larger number of modes can simultaneously participate in the nonlinear interaction. Such is the
case when a fundamental mode interacts with its own harmonics in a medium where the phase-velocity of the relevant
waves is at least approximately constant. Here, owing to the linear quality of the associated dispersion relation, several
intermingled triplets are excited from a pump and the isolated triplet approach can at most serve as an aid to understanding
the larger and more complex system [16].

In the present work we thus focus on a multimode extension of the triplet interaction to address the corresponding
behaviour as the nonlinear coupling between the various modes increases. The question to be examined here is basically
whether or not a critical coupling strength is present defining a transition from a smoother to a less regular type of dynamics,
similarly to what happens with an isolated triplet. As we shall see, a transition will be indeed identified and argued to be of
relevance to nonlinear wave fields with cubic nonlinearities in the corresponding Lagrangian or Hamiltonian functions. Not
only that, but we shall also see that in the case where a large number of modes are actively involved in the dynamics, the
critical coupling becomes unsuspectingly small.

2. Full Lagrangian, its parameters and initial settings

We start with the Lagrangian for the multimode interaction of a collection of N modes in the form

L =
1
2

N
j=1


ẋ2j − ωj

2x2j

− ε


1≤i<j<k
i+j−k=0

gi,j,kxixjxk. (1)

The natural frequencies of the N modes are denoted by ωj with j = 1, 2, . . . ,N , and among the ordered summation over
unrepeated combinations of indexes i, j, k, one selects only those for which the indicated matchings can occur. The modal
integer indexes i, j, k mimic wave vectors in a dimensionless form, and with this summation rule we intend to comply
with the general view on the triplet interaction that each triplet is formed by different modes under wave vector matching
conditions. Whenever frequency matching is satisfied as well, strong resonant coupling occurs.

The frequencies ωi shall be taken to be linearly homogeneous on index ‘‘i’’, which represents the case where mode
frequencies are solely determined by wave vectors arising from second order derivatives operating on a virtually associated
spatial coordinate axis. In this case frequency matching poses no further restriction than the wave vector matching, and
several triplets can be simultaneously excited, which adhere to the focus of the present analysis as stated earlier. This sort
of physical modelling is of relevance in the collinear interaction of broadband optical and non optical modes in nonlinear
media [17,18].

Parameter ε measures the intensity of the triplet coupling represented by the product xixjxk, and the form factor g is
chosen to guarantee circumscription of the dynamics to finite regions of the phase-space. One notes indeed that the cubic
product has no definite sign and, if alone, can therefore generate unconfined trajectories escaping to infinity. The purpose of
the form factor g is thus to confine the dynamics to finite regions of the configuration space. In the present paper we choose
gi,j,k = g(xi, xj, xk) = e−(x2i +x2j +x2k )/σ

2
with a relatively large value of σ . As the quadratic sum exceeds the value of σ 2 the

interaction is automatically switched off with g → 0 and the remaining harmonic potential prevents the mode coordinates
from shooting to infinity. On the other hand, when mode excursions are always much smaller than σ , then g → 1 and the
coupling acts as a small perturbation producing the slow modulational changes on the modal amplitude and phases; this
is where one encounters the slow modulational regime. In a sense, form factor g incorporates higher-order nonlinearities
saturating the triplet interaction. We have also tried polynomial forms of confinement, which produce essentially the same
results, although at larger computational costs. The exponential therefore turns up as the preferred choice here.

All modes start off random noise level amplitude, |xi| ≤ 0.01, except for mode i = N/2 which acts as the initial pump.
Unless otherwise stated, we take xN/2 = 1.We place the pumpmidway of the spectrum in order to examine bilateral energy
distribution as the system evolves. This way one can examine in a very symmetrical way the inverse cascade down to mode
j = 1 and the ensuing direct energy cascade up to mode j = N as time evolves. The assumption that no mode beyond the
Nth is excited, can be laid on slightly firmer physical grounds if one adds strong dissipative rates beyond mode N . With
strong dissipation added this way, every mode outside the considered group would be fully quenched and energy would
remain confined in the initial collection.

Finally, we normalize time such thatωi=N/2 = 1. Under these conditionswe haveωi = 2i/N , withω1 = 2/N andωN = 2
in particular.

The particular form for the nonlinear potential chosen here allows to access the role of the three wave interaction.
Examining the limit of small amplitudes x2 ≪ σ 2 for illustrative sake, we write down the Euler–Lagrange equation for



Download English Version:

https://daneshyari.com/en/article/973935

Download Persian Version:

https://daneshyari.com/article/973935

Daneshyari.com

https://daneshyari.com/en/article/973935
https://daneshyari.com/article/973935
https://daneshyari.com

