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a b s t r a c t

Isolated complex networks have been studied deeply in the last decades due to the fact
that many real systems can be modeled using these types of structures. However, it is well
known that the behavior of a system not only depends on itself, but usually also depends
on the dynamics of other structures. For this reason, interacting complex networks and
the processes developed on them have been the focus of study of many researches in the
last years. One of the most studied subjects in this type of structures is the Synchroniza-
tion problem, which is important in a wide variety of processes in real systems. In this
manuscript we study the synchronization of two interacting scale-free networks, in which
each node has ke dependency links with different nodes in the other network. We map
the synchronization problem with an interface growth, by studying the fluctuations in the
steady state of a scalar field defined in both networks.

We find that as ke slightly increases from ke = 0, there is a really significant decreasing
in the fluctuations of the system. However, this considerable improvement takes place
mainly for small values of ke, when the interaction between networks becomes stronger
there is only a slight change in the fluctuations. We characterize how the dispersion of
the scalar field depends on the internal degree, and we show that a combination between
the decreasing of this dispersion and the integer nature of our growth model are the
responsible for the behavior of the fluctuations with ke.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the last decades the study of complex networks has attracted the attention of many researchers because many real
processes evolve on these types of structures. In early stages of these studies researchers were focused on processes that
develop on isolated networks, however, systems, in general, are not completely isolated, but interacting with other systems
instead. These types of interacting systems,which are a special case of the class calledNetworks of Networks (NoN), are com-
posed of internal and external connections. NoN structures were successfully used to understand epidemic spreading [1–5],
cascade of failures [4–9], diffusion [4,5,10,11] and synchronization [4,12–15].

Synchronization phenomena is a relevant subject in many areas, such as in neurobiology [15–19], animal behavior
[20–22], power-grid networks [23–25] and so forth. In a relatively recent approach, synchronization problems in complex
networks are associated to the fluctuations of a scalar h defined over the system [14,26–39]. This scalar field is a measure of
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the amount of load that a node has to manage. For example, in the problem of queuing networks, the load is proportional to
the waiting time that a node needs to complete his task. The load in a node must be reduced in order to avoid increasing the
waiting time by distributing efficiently the loads and thus improving the synchronization. In this approach the fluctuations
are given by

W =


1
N

N
i=1

(hi − ⟨h⟩)2


, (1)

where hi is the load of node i, ⟨h⟩ is the average value of the load over the network, N is the system size, and {} is the
statistical average. In the steady state the fluctuations reach a constant valueW ≡ Ws, which depends on the topology of the
network. This type of process was studied in networks with different topologies, but in the last few years many researches
have focused on Scale-Free (SF) networks because they are obiquous in many real systems. These kinds of networks are
characterized by a degree distribution P(k) ∼ k−λ, where P(k) is the probability that a node has k internal links and λ is the
exponent of the power law distribution. In general, λ takes values between 2.5 and 3 in real SF networks.

One of the most studied models of growth interface is the Family model [14,35–40], which is a surface relaxation model
(SRM). In this model, at each time-step a node is randomly chosen, and the node with the lowest amount of load or ‘height’
between the selectednode and its neighbors increases its load in oneunit. In isolated SFnetworkswith exponentλ < 3 itwas
found that the dependence ofWs with the system size N has a crossover between two different behaviors at a characteristic
size N0: for N < N0,Ws ∼ logN , and Ws ∼ constant for N > N0 [35]. Thus in the last regime the system is scalable,
i.e. increasing the system size does not affect the fluctuations. In a more recent work [14] the authors studied the SRM
in two interacting SF networks, in which a fraction q (0 ≤ q ≤ 1) of nodes in each network is connected one by one
through bidirectional external links, allowing diffusion from one network to another. They found that the synchronization
improves as q increases and reaches an improvement of 40% for q = 1. In real systems however, nodes can have more
than one external connection with nodes in the other networks, which implies a stronger interaction between the systems.
This strong interaction may affect the processes that develop on structures of this type. In this work we are interested in
understanding how the strong interaction between networks affects the synchronization of the system. For this purpose
we study the SRM model in two SF networks in which each node has ke external connections. In this study we only use
stochastic simulations due to the fact that the heterogeneity of the SF networks and the lack of geometrical direction makes
difficult any theoretical approach [36].

2. Model

We build two SF networks Ai (i = 1, 2) using the Molloy–Reed Algorithm [41], avoiding multiple and self connections,
and we use a minimum degree kmin = 2 to ensure that each network has a single component [42]. In both networks every
node j, with j = 1, . . . ,N , has kij internal connections with nodes in the same network and ke external connections with
nodes in the other network. By simplicity, we consider the same number of external connections for all nodes. We denote
by vi

j and bij the set of internal and external neighboring nodes respectively of node j from network Ai. We chose as initial
condition all the scalar fields hi

j randomly distributed in the interval [0, 1].
At each time step a node j in one of the networks Ai, with i = 1, 2, is randomly chosen and receives a load unit. Then:

(1) The load diffuses to the node m, which is the one with the smaller load in the set {j, vi
j}. We denote this process as the

first internal diffusion.
(2) If hi

m is smaller than all the heights in the set bim, then the load is deposited inm and hi
m = hi

m +1. (Color green in Fig. 1.)
Otherwise the load diffuses to the node with the smaller height in the set {bim}. We denote this process as external
diffusion.

(3) If an external diffusion takes place, step (1) is repeated and, after a second internal diffusion, the load is deposited in a
node n in the network Al with l ≠ i (color red in Fig. 1). Then hl

n = hl
n + 1.

3. Results and discussions

For the simulations we build two SF networks with the same exponents λ = 2.6 and sizes N = 3 × 105 to ensure that
the system is in the scalable regime [35]. As the two networks used here have the same exponent λ and same system size N ,
the fluctuationsW i

s on each network will be in average the same, thus by simplicity we drop the index i. In Fig. 2 we plot the
square fluctuations in the steady state of each network W 2

s as a function of the external connection parameter ke. We can
observe that the synchronization of the system improves as ke increases and that the fluctuations converge asymptotically
to the optimal value W 2

s (N), which corresponds to the case ke = N . The reduction in the fluctuations when more external
connections are added is due to the fact that the overloaded nodes in one network have the possibility to diffuse their excess
of load to nodes that possess lower levels of load in the other network. This external diffusion allows to synchronize nodes
that have increasingly similar amounts of load. It is important to notice that for high interacting networks with ke = N ,
the value W 2

s (N) is independent of the exponent λ of the degree distribution because in this case the interaction between
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