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a b s t r a c t

Westudy statistical properties of theHamiltonian
(
H = ωaĎa+ κaĎ

√
N + 1+ κ

√
N + 1a

)
generating phase state. Using the generalized Hellmann–Feynman theorem for ensemble
average,wederive itsmean energy and find the ratio of themean energies contributed from
the term aĎa to that from aĎ

√
N + 1 + κ

√
N + 1a. The relation on the entropy-variation

with respect to the dynamic parameters ω and κ is also examined.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

One of themajor tasks in quantum statistics is to know the internal energy and energy distribution of a dynamical system.
Feynman in his book ‘‘Statistical Mechanics’’ calculated average potential and kinetic energy of a harmonic oscillator [1]. In
this work we consider statistical thermodynamics of an anharmonic oscillator whose Hamiltonian can generate phase state

H = ωaĎa+ κaĎ
√
N + 1+ κ

√
N + 1a, (1)

where
[
a, aĎ

]
= 1, a and aĎ are bosonic annihilation and creation operators, respectively, N = aĎa is a number operator.

The aim of this paper is to study this Hamiltonian system (1) from the point of view of quantum statistics.We shall derive
its mean (internal) energy and entropy-variation (with respect to the parameters ω and κ), we also evaluate the ratio of the
mean energy contributed from the number term aĎa to that from the aĎ

√
N + 1 + κ

√
N + 1a. To fulfill our task, we shall

adopt a new approach, i.e., employ the generalized Hellmann–Feynman theorem (GHFT) (in the sense of ensemble average)
and the method of characteristics.
Our paper is arranged as follows: In Section 2 we briefly review the GHFT for ensemble average 〈H (χ)〉e , where χ is

some parameter involved in a Hamiltonian H , and the subscript e denotes ensemble average. The GHFT is the generalization
of the Hellmann–Feynman theorem in the sense of pure state expectation. Moreover, based on von Neuman’s definition
of quantum entropy S = −ktr (ρ ln ρ) and using the GHFT we present the entropy-variation formula showing how ∂S

∂χ
is

related to ∂
∂χ
〈H (χ)〉e. In Section 3 we mention the anharmonic oscillator generating phase state and its Hamiltonian. In

Section 4, we employ the GHFT to study statistical properties for the system described the Hamiltonian in Eq. (1), including
internal energy, the average energy distribution and the entropy-variation.
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2. Brief review of the GHFT and the entropy-variation

The usual Hellmann–Feynman (HF) [2,3] theorem regarding to pure state expectation states

∂En
∂χ
=

〈
ψn

∣∣∣∣∂H∂χ
∣∣∣∣ψn〉 , (2)

where H (a Hamiltonian which involves parameter χ ) possesses the normalized eigenvector |ψn〉 ,H |ψn〉 = En |ψn〉. For
many troublesome problems in searching for energy level in quantum mechanics, people can resort to the HF theorem
to make the analytical calculation. However, this formula is only available for the pure state, while quantum statistical
mechanics is the study of statistical ensemble described by a density matrix ρ, which is a non-negative, self-adjoint, trace-
class operator of trace 1. Extending Eq. (2) to the ensemble average is of necessity [4–7].
For the mixed states in thermal equilibrium described by density operators

ρ =
1
Z
e−βH , β = (kT )−1 , (3)

where Z = tr
(
e−βH

)
is the partition function (k is the Boltzmann constant and T is the temperature), we have proposed the

GHFT. Thus 〈A〉e ≡ tr (ρA) is the ensemble average of for arbitrary operator A, the mean energy is given by

〈H (χ)〉e = tr [ρH (χ)] =
1
Z (χ)

∑
j

e−βEj(χ)Ej (χ) ≡ Ē (χ) , (4)

where the Hamiltonian H is independent of parameter χ . Performing the partial differentiation with respect to χ , we have

∂ 〈H〉e
∂χ

=
1
Z (χ)

{∑
j

e−βEj(χ)
[
−βEj (χ)+ β 〈H〉e + 1

] ∂Ej (χ)
∂χ

}
. (5)

Then using Eq. (2) we can further rewrite Eq. (5) as

∂

∂χ
〈H〉e =

〈
(1+ β 〈H〉e − βH)

∂H
∂χ

〉
e
, (6)

which is the GHFT. Noting the relation〈
H
∂H
∂χ

〉
e
= −

∂

∂β

〈
∂H
∂χ

〉
e
+

〈
∂H
∂χ

〉
e
〈H〉e , (7)

when H is independent of β , we can reform the GHFT into another form

∂

∂χ
〈H〉e =

∂

∂β

[
β

〈
∂H
∂χ

〉
e

]
=

(
1+ β

∂

∂β

) 〈
∂H
∂χ

〉
e
. (8)

Performing the integration in Eq. (8) over dβ yields

β

〈
∂H (χ)
∂χ

〉
e
=

∫
dβ

∂

∂χ
〈H〉e + K , (9)

where K is an integration constant. Another way to perform integration in Eq. (8) is over dχ , we see that

〈H〉e =
∫ χ

0

(
1+ β

∂

∂β

) 〈
∂H
∂χ

〉
e
dχ + 〈H (0)〉e , (10)

Nowwe turn to the relation between entropy-variation of Swith respect toχ . In classical statisticalmechanics S is defined
as F = U − TS,where T is the temperature, U is the system’s internal energy or the ensemble average of Hamiltonian 〈H〉e,
and F is the Helmholtz free energy F = − 1

β
ln
∑
n e
−βEn . Then the entropy cannot be calculated until systems’ energy level

En is known.
In this work we consider how to derive entropy without knowing En in advance, i.e., we will not diagonalize the

Hamiltonian before calculating the entropy, instead, our starting point is using entropy’s quantum mechanical definition,

S = −ktr (ρ ln ρ) . (11)

It is von Neuman who extended the classical concept of entropy (put forth by Gibbs) into the quantum domain. Note that,
because the trace is actually representation independent, Eq. (11) assigns zero entropy to any pure state. However, in many
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