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h i g h l i g h t s

• Two self-consistent methods to determine GARCH(1,1) parameters are proposed.
• Fitting higher-order moments can lead to inefficient GARCH(1,1) parameter estimation.
• Higher-order moment analysis produces similar results to MLM-based software.
• Fitting Fourier spectrum leads to a more stable GARCH(1,1) stochastic process.
• Fitting spectrum produces a shorter characteristic autocovariance time.
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a b s t r a c t

We propose two different methods for optimal choice of GARCH(1,1) parameters for the
efficientmodelling of stock prices by using a particular return series. Using (as an example)
stock return data for Intel Corporation, we vary parameters to fit the average volatility as
well as fourth (linked to kurtosis of data) and eighth statistical moments and observe pure
convergence of our simulated eighthmoment to the stock data. Results indicate that fitting
higher-order moments of a return series might not be an optimal approach for choosing
GARCH parameters. In contrast, the simulated exponent of the Fourier spectrum decay
is much less noisy and can easily fit the corresponding decay of the empirical Fourier
spectrum of the used return series of Intel stock, allowing us to efficiently define all GARCH
parameters.We compare the estimates of GARCH parameters obtained by fitting price data
Fourier spectra with the ones obtained from standard software packages and conclude that
the obtained estimates here are deeper in the stability region of parameters. Thus, the
proposed method of using Fourier spectra of stock data to estimate GARCH parameters
results in a more robust and stable stochastic process but with a shorter characteristic
autocovariance time.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In the 1980s, as the Internet was experiencing a development boom, and electronic forms of communications started
replacing paper, trading assets over the wire rapidly gained popularity. Over the Internet, price changes affected by adverse
market movement could be updated with unimaginable speed—almost instantly, leading to the development of specialised
computer systems, able to process hundreds of trade operations per second [1]. Since then, understanding the risk associated
with the trade and acquisition of assets has become of primary importance to traders [2]. Conventional time series operate

∗ Corresponding author.
E-mail address: k.pokhilchuk-09@alumni.lboro.ac.uk (K.A. Pokhilchuk).

http://dx.doi.org/10.1016/j.physa.2015.12.046
0378-4371/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.physa.2015.12.046
http://www.elsevier.com/locate/physa
http://www.elsevier.com/locate/physa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physa.2015.12.046&domain=pdf
mailto:k.pokhilchuk-09@alumni.lboro.ac.uk
http://dx.doi.org/10.1016/j.physa.2015.12.046


K.A. Pokhilchuk, S.E. Savel’ev / Physica A 448 (2016) 248–253 249

under the assumption of constant variance, while ARCH (AutoRegressive Conditional Heteroskedasticity) introduced in 1982
by R. Engle, allows the conditional variance to change over time as a function of past events [3].

Many of today’s popular models for risk analysis are based on volatility analysis. The cornerstone of these models is the
assumption that a given financial time series is stochastic, and its features must be measured and forecast probabilistically.
However, predictable patterns exist. For example, it may often be observed that small changes in the volatility of a financial
series tend to be followed by small changes, and large changes tend to foreshadow larger volatility changes [4,5]. Likewise
the GARCH (Generalised ARCH) model, introduced in 1986 by T. Bollerslev, remains amongst the most well-known models
to econometrists. Some of the typical applications of GARCH include, but are not limited to, forecasting stock market
volatility [6], predicting day-ahead electricity prices [7], predicting value at risk [8], predicting volatility in foreign exchange
rates [9], forecasting crude oil price [10], and stock return correlation analysis [11].

Alongwith variousmodifications to theGARCHmodel, differentways of constructingGARCHhave been developed. These
aim to enhance the GARCH family by, for example, introducing other, non-Gaussian probability density functions, such as
Lévy flight [12], student’s t-distribution [13], and exponential [14]. The first two distributions are useful for their ‘heavy-
tailed’ properties, which commonly resemble those found in stock return distributions. The exponential distribution has a
use in its own EGARCH (Exponential GARCH) model, which is particularly useful due to its ability to account for the ‘leverage
effect’ of a stock price series. Nevertheless, a consistent choice of parameters for GARCH simulations is still an open question.
In general this choice can depend on a particular simulation problem and modelling targets. However, we noticed that the
desirable stochastic properties of GARCH (for instance, higher-order moments of distribution) can hardly be reachable due
to their slow convergence, so alternative statistics properties have to be used to determine simulation parameters.

In Section 2we introduce the GARCHmodel and discuss the problem of a self-consistent choice of themodel parameters.
In Section 3 we discuss two different approaches to determine all three parameters of the model and demonstrate a very
slow convergence of GARCH simulations to fit empirical higher-order moments of distribution, using (as an example) a
stock return series for Intel. We also demonstrate a much better convergence of the Fourier spectra for the simulated data.
In Section 4 we compare our estimates derived both by using stock return Fourier spectra and higher-order kurtosis values
for several stocks to the estimates obtained by employing one of the standard available packages. Themain conclusion is that
the GARCH parameters estimated by simulating the standard package occur very close to the boundary separating stable
and unstable stochastic process.

Our proposed method of stock return Fourier spectra results in a more stable and robust GARCH process but with a
shorter autocovariance characteristic time. In contrast, our proposed method involving higher-order kurtosis data provides
a set of parameters which are quite similar to the standard method (even closer to the stability boundary with even a larger
autocovariance characteristic time).

2. The GARCHmodel

One of the goals of the GARCH model is to better describe the dynamics of conditional variance of a financial return
series. GARCH not only links predicted variance to the past events of the process itself, but also introduces dependence
of the process on the historical variance of the series [2]. This property allows GARCH to better capture price dynamics
as opposed to ARCH. In comparison, ARCH requires more parameters for accurate modelling of a price series, but as the
number of parameters to be estimated grows, computation becomes more demanding, and estimation of those parameters
burdensome. This is why GARCH replaced ARCH in popularity for the numerous future extensions to the model [2].

GARCH(p,q) is defined by [15]
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and higher moments ⟨x2mt ⟩ (with integerm), if the GARCH parameters satisfy certain constrains.
The first-order GARCH(1,1) model is defined as
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The analytical variance of GARCH(1,1) is given by [15]
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and the analytical kurtosis can be written as
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