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HIGHLIGHTS

e We study the entanglement temperature of a two-level atom in an external field.
e We use the Jaynes-Cummings model to study the entanglement temperature.
e In the system, we show that the standard and entanglement temperatures coincide.
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1. Introduction

Concepts such as thermodynamic equilibrium seem impossible to reconcile with the idea of isolated quantum systems
since such systems follow unitary evolutions and do not reach a final stationary equilibrium state. Of course, a completely
isolated quantum system is an idealization, constructed as a help to understand some phenomena displayed by real systems
which may be regarded as approximately isolated. However, we recently [ 1-4] introduced the concept of temperature for
an isolated quantum system which evolves in a composite Hilbert space. To do this we consider the quantum walk on the
line (QW) (see Ref. [5] and references therein). The QW is a natural generalization of the classical random walk in the frame
of quantum computation and quantum information processing and it is receiving much attention recently [6-9].

In our above mentioned works, we have developed a thermodynamic theory to describe the behavior of the entangle-
ment between the coin and position degrees of freedom of the QW. Henceforth, we call “entanglement temperature” to
the temperature associated to the entanglement between different degrees of freedom of an isolated quantum system. We
have shown that, in spite of the evolution being unitary, in the QW a steady state is established after a Markovian transient
stage. Those studies suggest that, if a quantum dynamics develops in a composite Hilbert space (i.e. the tensor product of
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several sub-spaces), then the behavior of an operator that belongs only to one of the sub-spaces may camouflage the uni-
tary character of the global evolution. However it is not clear what is the relation between the usual temperature and the
entanglement temperature. This question cannot be answered using the QW because it is an abstract mathematical model;
to do this we need a real physical model where both temperatures, the usual and the entanglement temperature, emerge
naturally. In order to answer it, we have here chosen one of the simplest and most interesting quantum models, the one
known as the Jaynes-Cummings model (JCM) [10,11], that studies the interaction between radiation and matter.

The JCM considers the interaction between a single two-level atom with a single mode of the electromagnetic field. The
coupling between the atom and the field is characterized by a Rabi frequency, and a loss of excitation in the atom appears
as a gain in excitation of the field. The collapse and the eventual revival of the Rabi oscillation, described by the analytical
solution of the JCM, is a direct evidence of the quantum nature of radiation. The use of the JCM has permitted to elucidate
basic properties of quantum entanglement as well as some aspects of the relationship between classical and quantum
physics. Since it was proposed, the phenomenon has been of permanent interest in the quantum theory of interactions. About
30years ago it was found that the model exhibits highly non-classic behavior, and the possibility of experimental realizations
appeared. The relative simplicity of the JCM and its extensions has drawn much attention in the physics community and,
more recently, in the field of the quantum computing [12,13].

Also in the 80s, the Thermo Field Dynamics (TFD) formalism [14,15] was applied to the JCM. The TFD is a method, devel-
oped in the 70s by Takahashi and Umezawa [16], for describing Quantum Mechanical systems at finite temperature. Using
this method, it is possible to describe the statistical average of an observable at finite temperature as a pure state expectation
value. Thus, within the TFD formalism, one does not need to deal with a mixed state, which is a statistical ensemble of pure
states at finite temperature. In return for the above advantage, the TFD introduces the so-called tilde particles correspond-
ing to ordinary particles, thus doubling the dimension of the Hilbert space associated to the system. In the TFD method the
ordinary particles and the introduced tilde particles represent the dynamical degrees of freedom and the thermal degrees
of freedom, respectively.

In the present work we connect, within the JCM, the TFD thermodynamics with the entanglement thermodynamics
presented in our previous works [1-3]. The paper is organized as follows. In the next section we review the usual JCM and
study the photon thermodynamics in that model. In third section we develop the entanglement thermodynamics for the
JCM and study its connection to the TFD-defined temperature. Finally, in the last section we draw some conclusions.

2. Jaynes-Cummings model

We consider the ordinary JCM [11], composed by a single two-state atom in an optical cavity, interacting with a single
quantized mode, with frequency w. The Hilbert space of the JCM has the form of a tensor product

H = Hn ® Ha, (1)

where the photon space, #y, is spanned by the unitary orthonormal vectors of the photon number state {|n)}, and the atom
space, F,, is spanned by the two orthonormal quantum states {|e) , |f)} that represent the excited and fundamental states
of the atom, respectively. Note that the set {|n, e), |n, f)}, where |n, e) = |n)|e) and |n, f) = |n)|f), is an orthonormal base
in the JCM Hilbert space.

In this model, if the atom excitation frequency wj is close to w, then the system is near the resonance and it is possible
to use the rotating wave approximation. In this case, and removing the field vacuum energy, the system Hamiltonian is

h h
H=hwa'a+ @0z + 28 (a'o_ +acy), (2)

where af and a are the photon creation and annihilation operators respectively, and act on the photon number state |n). The
radiation-matter coupling constant g is fixed by physical considerations such as the cavity volume and the atomic dipole
moment. The raising and lowering operators are defined by

oy = le)(fl,

o- = f){el, 3)
and the z Pauli operator by

o; = le)(e| — If) (fI = [0}, 0], (4)

and act on the atom states. Then the Hamiltonian, Eq. (2), is such that each photon creation is accompanied by an atomic
de-excitation, and each photon annihilation by an atomic excitation. For a given photon number value n, Eq. (2) has the
eigenvalues

1 1
E+(n) = how (n + 5) + ih.Qn((S), (5)
where, for a specific detuning parameter § = w — wy,

2(8) = V8% + (n+ 1)g?, (6)
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