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• Ti–Ni–Al Wagner integral diffusion coefficients.
• Experimental results of Ti–Ni–Al diffusion at 1173 K.
• Diffusion couple technique in studying the phase relations.
• Entropy production hypothesis of choosing the diffusion path.
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a b s t r a c t

In this paper the reactive diffusion in Ti–Ni–Al system is discussed at 1173 K. The calcu-
lation method based on the binary approach is presented. The key kinetic parameter is
Wagner integral diffusion coefficient. The experimental and simulation results of reactive
diffusion between pure Ti and β-NiAl are compared at 1173 K after 100 h.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The phase competition in ternary system is much more complex than in binary one. In binary all phases sooner or later
appear during the diffusion process. In ternary system the number of possible regimes is greater and not all phases will
grow [1]. According to the phase diagram some phases should appear at the diffusion zone, however they are absent. On the
other hand some metastable phases absent at the phase diagram sometimes are formed instead of the stable phases [2–8].

The processes of new phase formation and growth in the diffusion zone of the binary and multicomponent systems are
controlled by additional factors determining the evolution [9]:

1. the thermodynamic or kinetic suppression of some phases at nucleation stage,
2. the finite rate of mass transport through the interphase zone or, in the other words, the deviations from local equilibrium

at the moving phase boundaries,
3. the effect of the fast diffusion paths,
4. the extreme principle methods, i.e., the use of semiempirical principle of maximum release rate of Gibbs free energy,
5. The micro-mechanical state at the interface.

Themost knownmodel describing the influence of interface kinetic was presented by Gosele and Tu already in 1982 [10].
The method predicts the well known linear-parabolic growth law for the single phase growth.
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The problem of regimes choice must be solved. In this paper this problemwill be discussed. The idea is that the diffusion
will cross the regimes with the highest entropy production value. Thus the entropy production will be calculated for each
phase boundary and the most probable ones will be chosen.

2. Diffusion in ternary systems with low nonstoichiometry

The analysis is based on the generalizedDarkenmethod (mass conservation law) for each phase [1,11,12]. The component
diffusion flux, Jdi ≡ ciυd

i , should be expressed by the proper constitutive formula. In this work we implement the
Nernst–Planck flux equation [13,14]:

Jdi = −ciBi
∂µi

∂x
, (1)

where µi is the diffusion potential; Bi denote the mobility (Bi = Di/kT ).
The chemical potential should be expressed by known thermo-dynamical functions. Thus, the target is to obtain the

relation of the chemical potential on composition. In themulticomponent systemat constant temperature andwhen stresses
are negligible the integral form of the Gibbs relation becomes [15]:

G (n1, . . . , nr) = n1µ1 + n2µ2 + · · · + nrµr (2)

where ni denote the number of moles of component i.
Furthermore, by considering the Gibbs free energy per mole we obtain:

g =
G
n

= N1µ1 + N2µ2 + · · · + Nrµr (3)

where n denotes the total number of moles and Ni the ith component molar fraction. Assuming, that the molar fractions are
related by the relation:

N1 + N2 + · · · + Nr = 1 (4)

the free Gibbs energy, Eq. (3) can be rewritten in the following form:

g = N1µ1 + N2µ2 + · · · + Nr−1µr−1 + (1 − N1 − N2 − · · · − Nr−1) µr (5)

where g is the free Gibbs energy, µi denote the chemical potential. The differentiation of Eq. (5) by the molar fractions
results in:

∂g
∂N1

= µ1 − µr ,

∂g
∂N2

= µ2 − µr ,

. . .

∂g
∂Nr−1

= µr−1 − µr

(6)

which in the concise form can be written as:

µi =
∂g
∂Ni

+ µr for i = 1, . . . , r − 1. (7)

All the quantities in Eqs. (3)–(7) depend on time and position.
Eq. (7) allows to calculate the dependence of the chemical potential on the molar ratio:

∂µi

∂Nj
=

∂2g
∂Ni∂Nj

+
∂µr

∂Nj
for i, j = 1, . . . , r − 1. (8)

Differentiation of the Gibbs relation (0 = N1dµ1 + N2dµ2 + · · · + Nrdµr) over N1, follows:

0 = N1
∂µ1

∂N1
+ N2

∂µ2

∂N1
+ · · · + Nr

∂µr

∂N1
(9)

thus, equations defining the chemical potentials, Eq. (8) can be introduced instead of N2
∂µ2
∂N1

, . . . ,Nr−1
∂µr−1
∂N1

, result in:

0 = N1
∂µ1

∂N1
+ N2


∂2g

∂N2∂N1
+

∂µr

∂N1


+ · · · + Nr−1


∂2g

∂Nr−1∂N1
+

∂µr

∂N1


+ Nr

∂µr

∂N1
(10)
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