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h i g h l i g h t s

• We analyze the effects of evenly spacing in Detrended Fluctuation Analysis (DFA).
• We compare evenly vs. logarithmic spacing with synthetic signals.
• Evenly spacing decreases by 36% the dispersion of estimates.
• Evenly spacing could allow the analysis of shorter time series.
• Evenly spacing should be systematically adopted in the application of DFA.
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a b s t r a c t

Detrended Fluctuation Analysis is a widely used method, which aims at assessing the level
of self-similarity in time series. This method analyzes the diffusion properties of the signal,
by computing the linear regression slope in the diffusion plot, representing in log–log
coordinates the relationship between the variability of the signal and the length of the
intervals over which this variability is computed. We compare in this paper the results
obtained with logarithmically spaced and evenly spaced diffusion plots. The study shows
the substantial benefits of evenly spacing, especially in the reduction of the variability of
estimation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Detrended Fluctuation Analysis (DFA), initially introduced by Peng et al. [1], is a widely used analysis method which
aims at determining the level of self-similarity in a time series. A better understanding of this method supposes a short
introduction to the underlying model.

TheDFA algorithm is based on the diffusion property of fractional Brownianmotion (fBm), a family of stochastic processes
introduced by Mandelbrot and Van Ness [2]. Here we focus on the discrete version of fBm, which corresponds to the nature
of the series analyzed in experimental research. In such process variance is a power function of the length (n) of the interval
over which it is computed. Consider a process xi:

Var(xi) ∝ n2H , (1)

where H is the Hurst exponent, which can take any real value within the interval ]0, 1[. For H = 1/2, xi corresponds to
ordinary Brownian motion, and variance is just proportional to the elapsed time (normal diffusion). For H ≠ 1/2, xi is
characterized by anomalous diffusion: The process is said subdiffusive for H < 1/2, and superdiffusive for H > 1/2.
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Fig. 1. Two example diffusion plots, obtained with the same series. The left panel represents the logarithmically spaced plot, and the right panel an evenly
spaced plot. The slopes of the regression lines are 0.85 and 0.88, respectively.

A second family of stochastic processes, fractional Gaussian noise (fGn), is defined as the series of increments within
a fBm. By definition, a fGn is the series of differences in a fBm, and conversely the summation of a fGn gives a fBm. Each
fBm series is then related to a specific fGn, and both are characterized by the same H exponent. H determines the nature of
correlations between successive values in the fGn: for H < 0.5, successive values are negatively correlated, and the series is
said to be anti-persistent. Conversely forH > 0.5 successive values are positively correlated, and the series is persistent. For
H = 0.5, successive values are uncorrelated, and the series corresponds to white noise. An important difference between
these two classes of processes is that fBm are non-stationary processes, as suggested by Eq. (1), whereas fGn series present
stationary mean and variance over time.

As presented in the first paragraphs of this article, fGn and fBm are defined as two distinct families, which can
be considered superimposed, with their relationships of summation/differencing. A number of authors, however, have
proposed to consider these two families as a continuum, surrounding the mythical border of ‘‘ideal’’ 1/f noise [3–6].

The Detrended Fluctuation Analysis (DFA), Ref. [1] can be applied to both fGn and fBm signals. The details of the DFA
algorithmwill be detailed later in this paper. Herewe just present its general principles, in order to introduce the hypotheses
underlying the present work. This method exploits a typical scaling law, which states that the standard deviation of the
integrated series is a power function of the interval length over which it is computed, with an exponent α. Considering a
time series xi:Xi =

i
k=0

xk

SD(Xi) ∝ nα.

(2)

This scaling just derives from the original definition of fBm, expressed in Eq. (1). fGn series are characterized by α exponents
ranging from 0 to 1, and fBm by exponents ranging from 1 to 2. α = 1 corresponds to 1/f noise. If the series xi is a fGn, Xi is
the corresponding fBm and α is the Hurst exponent. If xi is a fBm, Xi belongs to another family of over-diffusive processes,
characterized by α exponents ranging from 1 to 2, and in that case α = H + 1 [1].

The DFA algorithm works as follows: The series is first integrated, and then this integrated series is divided into non-
overlapping intervals of length n. Within each interval the series is detrended, and the standard deviation of the residuals
is computed. Then one calculates the average (detrended) standard deviation for the intervals of length n, noted F(n). This
computation is repeatedly performed over all n values. In practice, the shortest interval length is chosen for allowing a valid
estimate of standard deviation (for example n = 10), and the lengthiest for allowing at least two distinct estimates (e.g.,
n = N/2). Then F(n) is plotted against n in log–log coordinates, forming the so-called diffusion plot, and the exponent α is
obtained as the slope of the linear regression (see Fig. 1, left panel).

An important consequence of this logarithmic transformation is that the density of points along the abscissa axis increases
as interval length increases (see Fig. 1, left panel). And as regression analysisworks on plane geometric principles, theweight
of long intervals in the calculation of the slope becomes higher than that of short intervals. Moreover, the long-term region
of the diffusion plot often presents irregularities around the linear trend, especially because the number of intervals involved
in the computation of F(n) is smaller for long time scales [7]. This results in a greater uncertainty in the determination of
the slope in the long-term region of the diffusion plot, where most points are concentrated. A solution for overcoming this
problem is to define the diffusion plot over a set of points evenly spaced in the logarithmic scale (Fig. 1, right panel).

Several methods have been proposed for obtaining a series of evenly spaced points in the log–log plot. Some authors
have proposed to select a set of interval lengths, evenly spaced on the logarithmic scale. This ideawas initially introduced by
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