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h i g h l i g h t s

• Empirical mode decomposition is used to study high frequency data.
• For fractional Brownian motion, we identify a variance scaling law.
• Wemeasure volatility at different time horizons for different stock market indices.
• Some scaling deviations are identified for the less developed financial markets.
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a b s t r a c t

Volatility of intra-day stock market indices computed at various time horizons exhibits a
scaling behaviour that differs fromwhat would be expected from fractional Brownian mo-
tion (fBm). We investigate this anomalous scaling by using empirical mode decomposition
(EMD), a method which separates time series into a set of cyclical components at different
time-scales. By applying the EMD to fBm, we retrieve a scaling law that relates the variance
of the components to a power law of the oscillating period. In contrast, when analysing
22 different stock market indices, we observe deviations from the fBm and Brownian mo-
tion scaling behaviour. We discuss and quantify these deviations, associating them to the
characteristics of financial markets, with larger deviations corresponding to less developed
markets.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Over the last few years financial markets have witnessed the availability and widespread use of data sampled at high
frequencies. The study of these data allows to identify the intra-day structure of financial markets [1,2]. Data at these
frequencies have dynamic properties which are not generated by a single process but by several components that are
superimposed on top of each other. These components are not immediately apparent, but once identified, they can be
meaningfully categorized as noise, cycles at different time-scales and trends [1].

Since the early work of Mandelbrot [3,4], it was recognized that different time-scales contribute to the complexity of
financial time series in a self-similar (fractal) manner. Empirical properties of financial data at various frequencies have
been observed in a number of studies, see for example Refs. [5–9].

According to the random walk hypothesis [10], financial market dynamics can be described by a random walk, a self-
similar process with scaling exponent (Hurst exponent) H = 0.5 [11]. Opposing this theory, Peters [12] introduced the
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fractalmarket hypothesis (FMH), representing financialmarket dynamics by fractional Brownianmotion (fBm), a self-similar
process with scaling exponent 0 < H < 1. The focus of the FMH is on the interaction of agents with various investment
horizons and differing interpretations of information. Based on this theory, heterogeneous market models have explained
some stylized facts (such as volatility clustering, kurtosis, fat tails of returns, power law behaviours) observed in financial
markets, see for example Refs. [13–16].

In self-similar uni-scaling process, such as fBm, all time-scales contribute proportionally and there is a specific relation
that links statistical properties at different time-scales [17]. However, real financial time series have more complex scaling
patterns, with some time-scales contributing disproportionally; these patterns characterize multi-scaling processes whose
statistical properties vary at each time-scale [18–22].

The knowledge of scaling laws in financial data helps us to understandmarket dynamics [23,24], that can be interpreted to
construct efficient andprofitable trading strategies. In this paper,weuse empiricalmodedecomposition (EMD), an algorithm
introduced by Huang [25], to decompose intra-day financial time series into a trend and a finite set of simple oscillations.
These oscillations, called intrinsic mode functions (IMFs), are associated with the time-scale of cycles latent in the time
series. The EMD provides a tool for an exploratory analysis that takes into account both the fine and coarse structure of the
data. This decomposition has been widely used in many fields, including the analysis of financial time series [26–30], river
flow fluctuations [31], wind speed [32], heart rate variability [33], etc.

In this paper, we first apply EMD to fBm, uncovering a power law scaling between the period and variance of the IMFs
with scaling exponent related to the Hurst exponent. We then apply EMD to 22 different stock market indices whose prices
are sampled at 30 s intervals over a time span of 6 months. In this case, we encounter more complex scaling laws than in
fBm. The deviations from the fBm behaviour are quantified and interpreted as an anomalous multi-scaling behaviour.

This paper is organized as follows. In Section 2, we introduce the EMD. In Section 3, we present the variance scaling
properties of fBm. In Section 4, we present an application to high frequency financial data. We finally conclude in Section 5.

2. Empirical mode decomposition

The empirical mode decomposition is a fully data-driven decomposition that can be applied to non-stationary and
non-linear data [25]. Different from the Fourier and the wavelet transform, the EMD does not require any a priori filter
function [34]. The purpose of the method is to identify a finite set of oscillations with scale defined by the local maxima and
minima of the data itself. Each oscillation is empirically derived from data and is referred as an intrinsic mode function. An
IMF must satisfy two criteria:

1. The number of extrema and the number of zero crossings must either be equal or differ at most by one.
2. At any point, the mean value of the envelope defined by the local maxima and the envelope defined by the local minima

is zero.

The IMFs are obtained through a process thatmakes use of local extrema to separate oscillations startingwith the highest
frequency. Hence, given a time series x(t), t = 1, 2, . . . , T , the process decomposes it into a finite number of intrinsic mode
functions denoted as IMF k(t), k = 1, . . . , n and a residue rn(t). If the decomposed data consist of uniform scales in the
frequency space, the EMD acts as a dyadic filter and the total number of IMFs is close to n = log2(T ) [35]. The residue is the
non-oscillating drift of the data. At the end of the decomposition process, the original time series can be reconstructed as:

x(t) =

n
k=1

IMF k(t) + rn(t). (1)

The EMD comprises the following steps:

1. Initialize the residue to the original time series r0(t) = x(t) and set the IMF index k = 1.
2. Extract the kth IMF:

(a) initialize h0(t) = rk−1(t) and the iteration counter i = 1;
(b) find the local maxima and the local minima of hi−1(t);
(c) create the upper envelope Eu(t) by interpolating between the local maxima (lower envelope El(t) by interpolating

the local minima, respectively);
(d) calculate the mean of both envelopes asmi−1(t) =

Eu(t)+El(t)
2 ;

(e) subtract the envelope mean from the input time series, obtaining hi(t) = hi−1(t) − mi−1(t);
(f) verify if hi(t) satisfies the IMF’s conditions:

• if hi(t) does not satisfy the IMF’s conditions, increase i = i + 1 and repeat the sifting process from step (b);
• if hi(t) satisfies the IMF’s conditions, set IMF k(t) = hi and define rk(t) = rk−1(t) − IMF k(t).

3. When the residue rk(t) is either a constant, a monotonic slope or contains only one extrema stop the process, otherwise
continue the decomposition from step 2 setting k = k + 1.
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