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h i g h l i g h t s

• We construct the information transfer network based on the transfer entropy.
• We analyze the modular structure with various time resolutions.
• We compare the results with modular structure obtained from the cross correlations.
• We show that the transfer entropy provides a better modular structure with higher value of modularity.
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a b s t r a c t

We study the modular structure of financial network based on the transfer entropy (TE).
From the comparisonwith the obtainedmodular structure using the cross-correlation (CC),
we find that TE and CC both provide well organizedmodular structure and the hierarchical
relationship between each industrial group when the time scale of the measurement is
less than one month. However, when the time scale of the measurement becomes larger
than one month, we find that the modular structure from CC cannot correctly reflect the
known industrial classification and their hierarchy. In addition the measured maximum
modularity, Qmax, for TE is always larger than that for CC, which indicates that TE is a better
weight measure than CC for the system with asymmetric relationship.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Recent development of network science has been provided very useful and comprehensive framework to investigate
the interwoven connectivity patterns observed in a wide range of scientific disciplines from physics to biology and
economics [1]. In many real networks such as social networks [2], brain networks [3], protein-interaction network [4], each
node belongs to amodule or community. Themodule is a group of nodeswhich form a tightly knit groupwith high density of
within-group edges and a lower density of between-group edges [5]. Such modules or communities are mesoscale building
blocks of complex networks, because they usually correspond to the fundamental functional blocks in a network. Therefore,
classifying modules in a network has been a fundamental problem to understand the origin of the specific topological,
functional, and dynamical properties of a network.

Most studies on the modular structure of a given network have been focused on the finding of an efficient algorithm
from a given topological information. Examples include themodularitymaximization [5], clique percolation [6], and spectral
analysis of the non-backtracking matrix [7]. Due to the inherent complexity, developing a more efficient model algorithm
is still an open problem in network science. Besides finding the efficient algorithm, uncovering the relationship between
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the given modules is also an important quest to understand the organization of complex systems. Especially, the hierarchy
between themodules in a network is one of the important and pervasive features of the organization of natural and artificial
systems out of equilibrium [4,8–10]. Thus, finding the hierarchical relationship between modules potentially provides
significant insight into the central aspects governing the physical properties of networks and their functionality.

There is an additional difficulty in finding modules and their relationship in many real networks. Many real networks
are well described by the weighted networks in which each link is associated with a weight [11]. Examples of weighted
networks include scientist collaboration network and airport network [12]. Even though the topological definition of the
modularity for the weighted networks can be easily extended from that for the unweighted network [13], finding a good
measure for weight of each link is not a trivial problem. Therefore, in order to understand the dynamical and topological
properties of such weighted networks, it is very important to find more informative weight measure for network analysis
of various systems.

One widely usedmeasure for the weight is the cross correlation (CC), which is usually assumed to be symmetric [14–21].
For example, in financial system, Mantegna introduced a method to find a hierarchical arrangement of the stocks based on
the CC of asset returns [14]. By defining an appropriatemetric, they constructed theminimum spanning tree (MST) from the
fully connected weighted graph and identified the clusters of companies. More recently, the study on the time dependent
properties of CC distribution and the dynamic asset tree showed quantitative differences between the crash and the normal
periods [21].

However, in many real complex systems, the relationship between each unit is not necessarily symmetric. One of
important factors for such asymmetry is the causality. The causality in complex systemwas usually measured by the lagged
CC [22], Granger causality [23], and the time-delayedmutual information [24]. The lagged CC is intuitive and simplemeasure
for the asymmetric interaction between each unit in complex systems. By using the lagged CC, Kullmann et al. constructed
a weighted directed network and quantitatively showed that there is some pulling effect between companies in financial
system [22]. The causality network between global market indices based on the Granger causality was also studied [25].
Time-delayed mutual information provides more general and intuitive measure for the dependence between random
variables. But it was recently shown that the mutual information does not explicitly distinguish the actually exchanged
information due to a common history or input signal [26]. As an alternativemeasure of the information transfer, the transfer
entropy (TE) was introduced to exclude such undesired influences [26]. In financial systems, such as global market indices,
the causality measured by TE between the market indices is well represented by the weighted directed edges [27].

In this paper, to investigate how useful TE is as a weight measure for financial system, we consider the information
transfer network (ITN), in which TE is used as the weight measure, and analyze the modular structure. The modular
structures of ITN are comparedwith those of correlation network (CN) which uses the cross correlation to determineweight
between companies. From the comparison, we find that themodules of both ITN and CN are consistent with the well known
industrial classification [28] when the time scale of the measurement is small. However, if the time scale becomes larger,
then the modules in CN significantly deviate from the known industrial classification. In addition, the measured maximum
modularity, Qmax, of ITN is always larger than that of CN, which indicates that TE is a better weight measure than CC for the
systems in which the asymmetric relationship between each unit becomes important.

2. Data set and definition of states

In order to study modular structure of the financial network and their hierarchical relationship, we use the Standard &
Poor’s (S&P) 100 data traded from 03/01/1962 to 03/12/2010 [29]. From the obtained time series of S&P 100 index, we first
define the state, it , of company I at day t to calculate TE. As the simplest choice of it for a company I we consider the binary
state, i.e. it = 1 (0) if YI(t + 1t) ≥ YI(t) (YI(t + 1t) < YI(t)), where YI(t) denotes the stock price of company I at time t .
Thus it simply represents the increase (decrease) of price if it = 1 (it = 0).

3. Transfer entropy and cross correlation

Let it (jt ) be the state of company I (J) at time t . TE which represents the information flow from J to I is defined as [26]
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Hereweuse the shorthandnotation i(k)t = (it , . . . , it−k+1). The sum in Eq. (1) represents the sumover all available realization
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previous samples i(k)t and j(ℓ)t are given. k and ℓ in Eq. (1) are set as k = ℓ = 1 [26]. In ITN the weight from a company J to I
is assigned as wJI = TJ→I .

For a comparisonwe use CC as aweight between nodes to construct CN. CC between node I and J ,GIJ , is defined as [15–20]
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