
Research Policy 43 (2014) 1381–1397

Contents lists available at ScienceDirect

Research Policy

jo ur nal ho me page: www.elsev ier .com/ locate / respol

Hidden structure: Using network methods to map system architecture

Carliss Baldwin, Alan MacCormack ∗, John Rusnak
Harvard Business School, Soldiers Field, Boston, MA 02163, United States

a r t i c l e i n f o

Article history:
Received 7 June 2010
Received in revised form 28 April 2014
Accepted 19 May 2014
Available online 21 June 2014

Keywords:
Product design
Architecture
Modularity
Software
Dominant designs

a b s t r a c t

In this paper, we describe an operational methodology for characterizing the architecture of complex
technical systems and demonstrate its application to a large sample of software releases. Our method-
ology is based upon directed network graphs, which allows us to identify all of the direct and indirect
linkages between the components in a system. We use this approach to define three fundamental archi-
tectural patterns, which we label core–periphery, multi-core, and hierarchical. Applying our methodology
to a sample of 1286 software releases from 17 applications, we find that the majority of releases possess a
“core–periphery” structure. This architecture is characterized by a single dominant cyclic group of com-
ponents (the “Core”) that is large relative to the system as a whole as well as to other cyclic groups in the
system. We show that the size of the Core varies widely, even for systems that perform the same function.
These differences appear to be associated with different models of development – open, distributed orga-
nizations develop systems with smaller Cores, while closed, co-located organizations develop systems
with larger Cores. Our findings establish some “stylized facts” about the fine-grained structure of large,
real-world technical systems, serving as a point of departure for future empirical work.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

All complex systems can be described in terms of their archi-
tecture, that is, as a hierarchy of subsystems that in turn have their
own subsystems (Simon, 1962). Critically, however, not all subsys-
tems in an architecture are of equal importance. In particular, some
subsystems are “core” to system performance, whereas others are
only “peripheral” (Tushman and Rosenkopf, 1992). Core subsys-
tems have been defined as those that are tightly coupled to other
subsystems, whereas peripheral subsystems tend to possess only
loose connections to other subsystems (Tushman and Murmann,
1998). Studies of technological innovation consistently show that
major changes in core subsystems as well as their linkages to other
parts of the system can have a significant impact on firm perfor-
mance as well as industry structure (Henderson and Clark, 1990;
Christensen, 1997; Baldwin and Clark, 2000). And yet, despite this
wealth of research highlighting the importance of understanding
system architecture, there is little empirical evidence on the actual
architectural patterns observed across large numbers of real world
systems.

∗ Corresponding author. Tel.: +1 6174956856.
E-mail addresses: cbaldwin@hbs.edu (C. Baldwin), amaccormack@hbs.edu

(A. MacCormack), jrusnak@alum.mit.edu (J. Rusnak).

In this paper, we propose a method for analyzing the design
of complex technical systems and apply it to a large (though non-
random) sample of systems in the software industry. Our objective
is to understand the extent to which such systems possess a
“core–periphery” structure, as well as the degree of heterogeneity
within and across system architectures. We also seek to examine
how systems evolve over time, since prior work has shown that
significant changes in architecture can create major challenges for
firms and precipitate changes in industry structure (Henderson
and Clark, 1990; Tushman and Rosenkopf, 1992; Tushman and
Murmann, 1998; Baldwin and Clark, 2000; Fixson and Park, 2008).

The paper makes a distinct contribution to the literatures of
technology management and system design and analysis. In par-
ticular, we first describe an operational methodology based on
network graphs that can be used to characterize the architecture
of large technical systems.1 Our methodology addresses several
weaknesses associated with prior analytical methods that have
similar objectives. Specifically, (i) it focuses on directed graphs, dis-
entangling differences in structure that stem from dependencies
that flow in different directions; (ii) it captures all of the direct and
indirect dependencies among the components in a system, devel-
oping measures of system structure and a classification typology

1 We define a large system as one having in excess of 300 interacting elements or
components.

http://dx.doi.org/10.1016/j.respol.2014.05.004
0048-7333/© 2014 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.respol.2014.05.004
http://www.sciencedirect.com/science/journal/00487333
http://www.elsevier.com/locate/respol
http://crossmark.crossref.org/dialog/?doi=10.1016/j.respol.2014.05.004&domain=pdf
mailto:cbaldwin@hbs.edu
mailto:amaccormack@hbs.edu
mailto:jrusnak@alum.mit.edu
dx.doi.org/10.1016/j.respol.2014.05.004

1382 C. Baldwin et al. / Research Policy 43 (2014) 1381–1397

that depend critically on the indirect linkages, and (iii) it provides
a heuristic for rearranging the elements in a system, in a way that
helps to visualize the system architecture and reveals its “hidden
structure” (in contrast, for example, to social network methods,
which tend to yield visual representations that are hard to com-
prehend).

We demonstrate the application of our methodology on a sam-
ple of 1286 software releases from 17 distinct systems. We find that
the majority of these releases possess a core–periphery architec-
ture using our classification scheme (described below). However,
the size of the Core (defined as the percentage of components in the
largest cyclic group) varies widely, even for systems that perform
the same function. These differences appear to be associated with
different models of development – open, distributed organizations
develop systems with smaller Cores, whereas closed, co-located
organizations tend to develop systems with larger Cores. We find
the Core components in a system are often dispersed across differ-
ent modules rather than being concentrated in one or two, making
their detection and management difficult for the system architect.
Finally, we demonstrate that technical systems evolve in different
ways: some are subject to continuous change, while others dis-
play discrete jumps. Our findings establish some early “stylized
facts” about the fine-grained structure of large, real-world technical
systems.

The paper is organized as follows. Next, we review the rele-
vant literature on dominant designs, core–periphery architectures,
and network methods for characterizing architecture. Following
that, we describe our methodology for analyzing and classifying
architectures based upon the level of direct and indirect coupling
between elements. We then describe the results of applying our
methodology to a sample of real world software systems. We con-
clude by describing the limitations of our method, discussing the
implications of our findings for scholars and managers, and identi-
fying questions that merit further attention in future.

2. Literature review

In his seminal paper “The Architecture of Complexity,” Herbert
Simon argued that the architecture of a system, that is, the way
the components fit together and interact, is the primary deter-
minant of the system’s ability to adapt to environmental shocks
and to evolve toward higher levels of functionality (Simon, 1962).
However, Simon and others presumed (perhaps implicitly) that
the architecture of a complex system would be easily discernible.
Unfortunately this is not always the case. Especially in non-physical
systems, such as software and services, the structure that appears
on the surface and the “hidden” structure that affects adaptation
and evolvability may be very different.

2.1. Design decisions, design hierarchies and design cycles

The design of a complex technological system (a product or pro-
cess) has been shown to comprise a nested hierarchy of design
decisions (Marple, 1961; Alexander, 1964; Clark, 1985). Decisions
made at higher levels of the hierarchy set the agenda (or technical
trajectory) for problems that must be solved at lower levels of the
hierarchy (Dosi, 1982). These higher-level decisions influence many
subsequent design choices, hence are referred to as “core concepts.”
For example, in developing a new automobile, the choice between
an internal combustion engine and electric propulsion represents a
core concept that will influence many subsequent decisions about
the design. In contrast, the choice of leather versus upholstered
seats typically has little bearing on important system-level choices,
hence can be viewed as peripheral.

A variety of studies show that a particular set of core
concepts can become embedded in an industry, becoming a
“dominant design” that sets the agenda for subsequent techni-
cal progress (Utterback, 1996; Utterback and Suarez, 1991; Suarez
and Utterback, 1995). Dominant designs have been observed in
many industries, including typewriters, automobiles and televi-
sions (Utterback and Suarez, 1991). Their emergence is associated
with periods of industry consolidation, in which firms pursuing
non-dominant designs fail, while those producing superior vari-
ants of the dominant design experience increased market share
and profits. However, the concept has proved difficult to pin
down empirically. Scholars differ on what constitutes a dominant
design and whether this phenomenon is an antecedent or a con-
sequence of changing industry structure (Klepper, 1996; Tushman
and Murmann, 1998; Murmann and Frenken, 2006).

Murmann and Frenken (2006) suggest that the concept of
dominant design can be made more concrete by classifying compo-
nents (and decisions) according to their “pleiotropy.” By definition,
high-pleiotropy components cannot be changed without inducing
widespread changes throughout the system, some of which may
hamper performance or even cause the system to fail. For this rea-
son, the authors argue, the designs of high-pleiotropy components
are likely to remain unchanged for long periods of time: such sta-
bility is the defining property of a dominant design. The authors
proceed to label high-pleiotropy components as the “core” of the
system, and other components as the “periphery.”

Ultimately, dominant design theory argues that the hierarchy
of design decisions (and the components that embody those deci-
sions) is a critical dimension for assessing system architecture. At
the top of the design hierarchy are components whose proper-
ties cannot change without requiring changes in many other parts
of the system; at the bottom are components that do not trigger
widespread or cascading changes. Thus any methodology for dis-
covering the hidden structure of a complex system must reveal
something about the hierarchy of components and related design
decisions.

In contrast to dominant design theory, where design decisions
are hierarchically ordered, some design decisions may be mutually
interdependent. For example, if components A, B, C, and D must
all fit into a limited space, then any increase in the dimensions
of one reduces the space available to the others. The designers of
such components are in a state of “reciprocal interdependence”
(Thompson, 1967). If they make their initial choices independently,
then those decisions must be communicated to the other designers,
who may need to change their own original choices. This second-
round of decisions, in turn, may trigger a third set of changes, with
the process continuing until the designers converge on a set of
decisions that satisfies the global constraint. Reciprocal interdepen-
dency thus gives rise to feedback and cycling in a design process.
Such cycles are a major cause of rework, delay, and cost overruns
(Steward, 1981; Eppinger et al., 1994; Sosa et al., 2013). Thus any
methodology for discovering the hidden structure of a complex sys-
tem must reveal not only the hierarchy of components and related
design decisions but also the presence of reciprocal interdependence
or “cycles” between them.

2.2. Network methods for characterizing system design

Studies that attempt to characterize the architecture of com-
plex systems often employ network representations and metrics
(Holland, 1992; Kauffman, 1993; Rivkin, 2000; Braha et al., 2006;
Rivkin and Siggelkow, 2007; Barabasi, 2009). Specifically, they
focus on identifying the linkages that exist between the different
elements (nodes) in a system (Simon, 1962; Alexander, 1964). A key
concept in this work is that of modularity, which refers to the way
that a system’s architecture is decomposed into different parts or

Download English Version:

https://daneshyari.com/en/article/984553

Download Persian Version:

https://daneshyari.com/article/984553

Daneshyari.com

https://daneshyari.com/en/article/984553
https://daneshyari.com/article/984553
https://daneshyari.com

