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a b s t r a c t

This paper examines the forecasting performance of ARIMA and two different kinds of artificial neural
networks models (multilayer perceptron and Elman) using published data of copper spot prices from the
New York Commodity Exchange, (COMEX). The empirical results obtained showed a better performance
of both neural networks models over the ARIMA. The findings of this research are in line with some
previous studies, which confirmed the superiority of neural networks over ARIMA models in relative
research areas.

& 2015 Elsevier Ltd. All rights reserved.

Introduction

Copper is one of the main metal commodities traded in the
major physical futures trading exchanges: the London Metal
Exchange (LME), the New York Commodity Exchange (COMEX),
and the Shanghai Futures Exchange (SHFE). Prices on these
exchanges reflect the balance between copper supply and
demand at a worldwide level, although they may be strongly
influenced by currency exchange rates and investment flows,
factors that may cause volatile price fluctuations partially linked
to changes in business cycle activity (Labys et al., 1998; Roberts,
2009).

Copper futures are financial tools that allow copper price mitiga-
tion opportunities, as copper prices are very sensitive to industries
such as electrical wiring, construction and equipment manufacturing—

all of them tending to follow economic cycles—as well as to producers
—Codelco, Freeport-McMoRan Copper & Gold, Glencore Xstrata, BHP
Billiton, Southern Copper Corporation, American Smelting and Refin-
ing Company, etc.—and even to countries like Chile and Zambia,
whose economies are strongly dependent on copper production and
subsequently on copper price evolution.

In these standardized markets, consumers, producers and investors
use this asset each with their own purpose, generating an increasing
demand on mathematical models to improve the prediction of price
evolution using different methodologies: time series alone (Dooley
and Lenihan, 2005) or combined with other methodologies such as
wavelets (Kriechbaumer et al., 2014), model forecasting (Goss and
Avsar, 2013), Fourier transformations (Khalifa et al., 2011), swarm
optimization algorithm (Ma et al., 2013), multicommodity models
(Cortazar and Eterovic, 2010), etc.

Through the purchase and sale of copper futures, consumers
and producers are able to manage the price risk associated to their
operations; consumers can secure a purchase price while produ-
cers can secure a selling price. Of course, investors can also take
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advantage of this market assuming the risk that the consumers
and producers are trying to avoid.

Focusing on the COMEX (based on data availability), a part of
the CME Group—one of the world's leading derivatives market-
places—comprising among others the NYMEX (New York Mercan-
tile Exchange), copper futures (HG symbol) are traded in contract
sizes of 25,000 pounds and quoted in U.S. cents per pound; the
contract basis is Grade 1 Electrolytic Copper Cathodes (full plate or
cut) conforming to the specifications adopted by the American
Society for Testing and Materials (CME Group, 2014).

In this market, where copper futures contracts are listed
for the current month and the next 23 consecutive months
according to the market contract specs, resulting a total of 24
different prices for the futures each trading day, the futures price
at which parties agree to transact is determined using the spot
price (price on the spot date, usually two bank days after the
trading date), the money market rate—in order to include finance
charges due to the delay of the payment—plus insurance and
storage at any of the physical delivery places that CME Group has
in the United States—which must be Licensed Warehouses—with-
out any freight allowance.

This is the reason why spot prices, which indicate future price
market expectations, and represent the underlying price of the
future contracts, are the variables commonly used to study and
analyze commodity price evolution or behavior.

Although the majority of the contracts are financially settled
and never go to delivery, spot prices have direct relation with the
place where delivery will occur. So, analyzing COMEX copper spot
prices means analyzing copper prices in the United States. As CME
Group is exploring to expand their copper futures business by
opening new storage facilities in Chile—something completely
opposite to the LME's policy of locating warehouses in consump-
tion areas rather than in production areas (Thomas and Mason,
2013)—when this action takes place it will introduce the need to
take new considerations into account when analyzing future
COMEX copper spot prices.

Materials and methods

The present research used as its main source of data the copper
spot closing prices from the COMEX from 2nd January 2002 to
16th January 2014. All the models employed in this paper were
trained and validated using the free statistical software R version
3.0.1 (R Core Team, 2013) and with the help of the libraries forecast
(Hyndman et al., 2013), AMORE (Castejon Limas et al., 2010) and
RSNNS (Bergmeir and Benitez, 2012).

The ARIMA model

As is well-known, ARIMAmodels are nowadays the most generally
used class of models for forecasting time series that can be stationar-
ized by transformations such as differencing and logging (Mills and
Markellos, 2008). The acronym ARIMA stands for auto-regressive
integrated moving average. The lags of the differenced series appear-
ing in the forecasting equation are called autoregressive terms, while
lags of the forecast errors are called moving average terms. In general,
any time series that needs to be differenced to be made stationary is
said to be an integrated version of a stationary series (Bernardo
Sánchez et al., 2013).

A nonseasonal ARIMA model (Mills and Markellos, 2008;
Bernardo Sánchez et al., 2013) is classified as an ARIMA ðp; d; qÞ
model where p is the number of autoregressive terms, d is the
number of non-seasonal differences and q is the number of lagged
forecast errors in the prediction equation.

The generalized form of ARIMA can be described as follows
(Ong et al., 2005):

∅ Bð ÞUΦðBSÞU 1�Bð Þd U 1�Bð ÞD UYt ¼ θðBÞUΘðBSÞUZt ð1Þ
where:

B is the backward shift operator,
d non-seasonal order of differences,
D seasonal order of differences,
∅; Φ; θ; Θ polynomials in B and BS.

Identifying the appropriate model for the stochastic component
describing a time-series repetitive involves three steps, commonly
known as the Box–Jenkins Approach (Box and Jenkins, 1970). First,
based on preliminary information, a model is tentatively identified.
Then, based on the tentative model, the corresponding model para-
meters are estimated. Finally, using the estimated coefficients, the
goodness of fit of the model is estimated. As is clear from what has
been said, the initial identification or simply specification is a very
important element in the process of model building. However,
combining the different orders p, d and q there is a huge number of
possible models for any number of longitudinally-recorded data.
Therefore, these stages are repeated until a suitable model for the
given data set has been identified. In the present research, and in
order to speed up the model identification process, a variation of the
Hyndman and Khandakar algorithm has been used (Hyndman and
Khandakar, 2008). This algorithm combines unit root tests and
minimization of Akaike's Information Criterion (AIC) (Sugiura, 1978)
and Maximum Likelihood Estimation (MLE) (Aldrich, 1997) to obtain
the ARIMA models.

The multilayer perceptron neural network model

A multilayer perceptron (MLP) is a feedforward artificial neural
network model that maps sets of input data onto a set of
appropriate output. The MLP is a modification of the standard
linear perceptron (Sánchez Lasheras et al., 2010). The MLP archi-
tecture is characterized as having its neurons grouped into layers
of different levels. Each of the layers is formed by a set of neurons
and three different kinds of layers are distinguished: the input
layer, hidden layer and output layer. Fig. 1 shows a scheme of a
MLP neural network with one hidden layer. Nowadays, multilayer
perceptrons using a backpropagation algorithm are the standard
algorithm for any supervised-learning pattern recognition process
and the subject of ongoing research in computational
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Fig. 1. Topology of feed forward multi-layer perceptron back-propagation ANN.
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