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A B S T R A C T

The transmissible nature of communicable diseases is what sets them
apart from other diseases modeled by health economists. The proba-
bility of a susceptible individual becoming infected at any one point in
time (the force of infection) is related to the number of infectious indi-
viduals in the population, will change over time, and will feed back into
the future force of infection. These nonlinear interactions produce
transmission dynamics that require specific consideration when mod-

eling an intervention that has an impact on the transmission of a
pathogen. Best practices for designing and building these models are
set out in this article.
Keywords: dynamic transmission, best practices, infectious disease,
modeling.
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Introduction

The transmissible nature of communicable diseases is the critical
characteristic that sets them apart from other diseases modeled
by health economists [7,8]. If an intervention reduces cases in the

community, then the risk to others goes down. Reduce them
enough, and the infection will be eliminated and will not return
unless reintroduced. Even then, it will not be able to spread unless
there are sufficient susceptible individuals. Maintaining vaccina-
tion—which reduces susceptibility—at sufficiently high coverage
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Background to The Task Force

A new Good Research Practices in Modeling Task Force was ap-
proved by the ISPOR Board of Directors in 2010, and the Society
for Medical Decision Making was invited to join the effort. The
Task Force cochairs and members are expert developers and ex-
perienced model users from academia, industry, and govern-
ment, with representation from many countries. Several tele-
conferences and hosted information sessions during scientific
meetings of the Societies culminated in an in-person meeting of
the Task Force as a whole, held in Boston in March 2011. Draft
recommendations were discussed and subsequently edited and
circulated to the Task Force members in the form of a survey
where each one was asked to agree or disagree with each recom-
mendation, and if the latter, to provide the reasons. Each group
received the results of the survey and endeavored to address all
issues. The final drafts of the seven articles were available on the
ISPOR and Society for Medical Decision Making Web sites for

general comment. A second group of experts was invited to for-
mally review the articles. The comments received were ad-
dressed, and the final version of each article was prepared. (A
copy of the original draft article, as well as the reviewer com-
ments and author responses, is available at the ISPOR Web site:
http://www.ispor.org/workpaper/Dynamic-Transmission-
Modeling.asp.) A summary of these articles was presented at a ple-
nary session at the ISPOR 16th Annual International Meeting in
Baltimore, MD, in May 2011, and again at the 33rd Annual Meeting
of the Society for Medical Decision Making in Chicago, IL, in October
2011. These articles are jointly published in the Societies’ respective
journals, Value in Health and Medical Decision Making. Other articles
in this series [1–6] describe best practices for conceptualizing mod-
els, building and applying other types of models, and addressing
uncertainty, transparency, and validations. This article addresses
best practices for dynamic transmission models. Examples are
cited throughout, without implying endorsement or preeminence
of the articles referenced.
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(though crucially not necessarily 100%) can permanently prevent
infection from spreading [7]. Thus, there are population-level ef-
fects in addition to those accruing to individuals and caregivers
reached by the program. This is not so for noncommunicable dis-
eases. For example, reducing the prevalence of heart disease
makes no difference to the heart disease risk in others. If every
case is treated, new cases still arise, and the overall health benefits
can be estimated by summing the individual benefits. Many com-
monly used decision-analytic models, such as Markov models, ig-
nore the indirect effects that arise from averted infections,
whereas dynamic transmission models provide a tool to model
such externalities.

This difference is fundamental and yet often overlooked by
analysts. In a recent review of cost-effectiveness studies of vacci-
nation programs, only 11% of 208 studies used an approach that
could incorporate these indirect (as well as direct) effects [9]. Oth-
ers have reported similar findings for other interventions against
communicable diseases, including mass screening and treatment
programs for chlamydia [10]. Most analysts have simply adapted
the same class of model used for noncommunicable diseases, ig-
noring this fundamental property of communicable disease con-
trol programs. Hence, comparison across economic analyses is
more difficult because results may be very sensitive to the under-
lying model structure. Clearly then, there is a need for specific
guidance in this field.

What is a Dynamic Transmission Model?

Dynamic transmission models (often shortened to “dynamic”
models) are capable of reproducing the direct and indirect effects
that may arise from a communicable disease control program.
They differ from other (static) models that assume a constant risk
of infection (sometimes referred to as the “force of infection”): it is
a function of the number of infectious individuals (or infectious
particles, such as intestinal worm eggs) in the population (or en-
vironment) at a given point in time [11]. If an intervention reduces
this pool of infectiousness, then the risk to uninfected susceptible
individuals will decrease. That is, individuals not reached by the
program can still benefit by experiencing a lower infection risk.
The models used can be deterministic or stochastic; individual or
cohort-based; include economic and health outcomes or be stand-
alone epidemiological analyses; be simple explorations of the sys-
tem or be very detailed with many parameters. All share the same
distinguishing feature—that the infection risk is dependent on the
number of infectious agents at a given point in time. These dy-
namic aspects will be the focus of these best practices.

Basic reproduction number

The basic reproduction number (R0) is a fundamental metric in
infectious disease epidemiology [11,12]. It is the average number of
secondary infections generated by a typical case in a fully suscep-
tible population. A closely allied metric is the effective reproduc-
tion number, Re(t), which does not specify that the whole popula-
tion must be susceptible, defined as R0 multiplied by the
susceptible fraction of the population s(t) [11,12]. The reproduction
number gives a measure of the disease’s ability to spread in a
population. A value of 1 gives a threshold for invasion of a patho-
gen into a population.

Malaria, for instance, now has an R0 below 1 in northern Eu-
rope, and although most Northern Europeans are susceptible, and
cases are regularly introduced via travel from endemic areas, ma-
laria epidemics do not occur [13,14]. By contrast, severe acute re-
spiratory syndrome had an R0 of approximately 3 (in health care
settings), and everyone was susceptible. That is, each case gener-
ated on average three other cases, and each of these would be
expected to generate an average of three further cases, and so on,

leading to an exponentially increasing epidemic [15]. The basic
reproduction number also gives an indication of the ease of con-
trolling an infection. It is obvious that there is no need for further
control measures for malaria in northern Europe. Severe acute
respiratory syndrome, on the other hand, required stringent con-
trol measures for a large epidemic to be averted.

Natural immunity is another unique feature of infectious dis-
eases (although not all infections stimulate immunity) and is the
principal reason for the depletion of susceptible individuals, lead-
ing to an epidemic slowing down and eventually declining. Dy-
namic transmission models typically capture this by allowing in-
dividuals who recover from infection to transition into a recovered
state in which they are immune to further infection. The rate at
which natural immunity is lost, returning individuals to a suscep-
tible state, is one factor that influences a pathogen’s ability to
remain endemic in a population.

When is a Dynamic Approach Appropriate?

Dynamic models are important in two circumstances: 1) when an
intervention impacts a pathogen’s ecology, for example, by apply-
ing selection pressure resulting in “strain replacement” [16,17],
and 2) when the intervention impacts disease transmission [7,8]. A
static model is acceptable if target groups eligible for intervention
are not epidemiologically important (e.g., evaluation of hepatitis A
vaccination in travelers from low- to high-incidence countries), or
when effects of immunizing a given group are expected to be al-
most entirely direct (e.g., vaccination of the elderly against influ-
enza or pneumococcal disease). Static models are also acceptable
when their projections suggest that an intervention is cost-effec-
tive, and dynamic effects would further enhance this (e.g., via pre-
vention of secondary cases). Adopting such an approach, which
undervalues an intervention, can lead to poor public health deci-
sion making if policymakers use such estimates to decide on the
optimum allocation of a limited health care budget.

Reduced transmission does not always result in net health and
economic gains; in particular, increasing age at infection may be
associated with reduced health due to the changing spectrum of
illness in older individuals [18]. Also, replacement effects have
been reported, for example, in pneumococcal disease, that may
limit health gains due to other subtypes of bacteria “substituting”
those removed by vaccination. Where static models project inter-
ventions to be unattractive or borderlineattractive (i.e., close to
willingness-to-pay thresholds), supplementary dynamic model-
ing should be undertaken to evaluate whether the inclusion of
indirect herd immunity effects, replacement, and age shifts alter
the projected cost-effectiveness. Although indirect effects can be
incorporated by using a static framework (e.g., European countries
did so by using US data [19,20] in evaluating the economic attrac-
tiveness of pneumococcal conjugate vaccines in children), the
danger is that the level of indirect protection may be very different
in another setting (e.g., different coverage levels). Flowcharts de-
veloped by the World Health Organization for the evaluation of
immunization programs can be helpful in guiding the decision
about dynamic versus static models [21].

Indirect effects of intervention programs

The best-known example of economically important indirect ef-
fects is herd immunity with large-scale vaccination programs.
When coverage exceeds a critical threshold (Vc), disease is elimi-
nated, as too few susceptible persons remain to ensure transmis-
sion. Infectious individuals will (on average) cause less than one
new infection before recovering, as most contacts will be with
immune individuals. As an epidemic does not occur, unvaccinated
individuals experience a low infection risk. In a homogeneously
mixing population (one in which all individual are equally likely to
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