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A B S T R A C T

The aim of this work is the estimation of the specimen thickness from pulsed thermography data using the virtual
wave concept. A virtual wave signal is calculated by applying a local transformation to the measured tem-
perature data. This virtual wave is a solution of the wave equation, whereby for the parameter estimation also
ultrasonic evaluation methods can be used, e.g. pulse-echo method for time-of-flight measurements. The time-of-
flight is directly related to the distance traveled by the wave and can be used to reconstruct the position of the
interface. This method yields a very good estimation of the thickness of a steel step wedge, with the advantage
that the same evaluation method can be used for reflection as well as transmission measurements.

1. Introduction

In the recent years pulsed thermography has been successfully ap-
plied for non-destructive testing and evaluation (NDT&E) of material
and components [1]. For depth estimation and in some cases for the
characterization of the thermal resistance between the bulk material
and the discontinuity usually a one-dimensional (1D) thermal model is
used. The thermal signal reconstruction (TSR) - technique [2] and its
combination with an early contrast approach [3] allows the estimation
of the defect depth and thermal resistance [4]. For defect detection the
Pulse Phase Thermography (PPT) method analyses the measured tem-
perature data in the frequency domain [5]. Several quantitative in-
version methods have been proposed to process PPT data, e.g. the blind
frequency method [6]. In addition to these well-known methods, there
are also many other approaches like the synthetic thermal time-of-flight
(STTOF) [7], dynamic thermal tomography (DTT) [1] or identification
methods based on the thermal contrast [8,9]. There are also new ap-
proaches in modulated photothermal radiometry to estimate the
thermal diffusivity or sample thickness [10,11].

In recent years interest has grown in the theory and application of
inverse heat transfer techniques to estimate material parameters or to
reconstruct defects. These techniques involve the minimization of an
objective function which contains the square of differences between the
experimental and model-based temperature at each time step. The ill-
posed nature of the thermal reconstruction problems leads to large
excursion and oscillation in the solution if quite small errors (noise) in

the measurement data occur. One approach to reduce such instabilities
is to use regularization procedures [12]. These are already used for 1D
thermal NDE problems, e.g. reconstruction of the thermal effusivity-
[13] or thermal conductivity- [14,15] depth profiles.

In this paper we evaluate pulsed thermography data from the per-
spective of ultrasonic testing. The virtual wave concept allows to apply
ultrasonic evaluation methods, like time-of-flight (TOF) on pulsed
thermography measurements [16]. We show that by a local transfor-
mation of the measured temperature, it is possible to process the data
appropriately to obtain the TOF or, equivalently the distance z. In this
study we estimate the thickness of metallic steps wedges from optical-
excited pulsed thermography measurements in transmission and re-
flection configuration.

2. Virtual wave concept

The non-stationary heat conduction process in solids is described by
the heat flux proportional to the temperature gradient which leads to
the heat diffusion equation
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where T tr( , ) is the temperature as a function of space and time and
=α k ρ c/( )p is the thermal diffusivity with the thermal conductivity k,

the density ρ and the heat capacity cp. The source term on the right side
describes a impulsive thermal excitation, where T r( )0 is the initial
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temperature distribution and δ t( ) the temporal Dirac delta
function.Ultrasound waves can be modeled using the wave equation,
where the acoustic pressure p tr( , ) is described as a function of space r
and time t:
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where p0 is the initial pressure just after the Dirac-like excitation im-
pulse and c is the speed of sound in the investigated media.Based on the
concept of virtual waves [16], we introduce the virtual wave T tr( , )virt .
This virtual wave is defined such that the wave equation (Eq. (2)) is
valid with the initial temperature distribution and an arbitrarily chosen
c:

⎜ ⎟⎛
⎝

∇ − ∂
∂

⎞
⎠

= − ∂
∂c t

T t
c t

T δ tr r1 ( , ) 1 ( ) ( ).2
2

2

2 virt 2 0
(3)

The connection between the temperature signal T tr( , ) and the
virtual wave signalT tr( , )virt at the same position r in the time domain is
a linear inverse problem, which can be formulated as Fredholm integral
of the first kind in the following form [12]:

∫ ′ ′ ′ =
−∞

∞
K t t T t dt T tr r( , ) ( , ) ( , ),virt (4)

where the right-hand side T and the kernel K are in principal known
functions, whileTvirt is the unknown solution. In our case the kernel K is
given exactly by the underlying mathematical model of virtual waves,
while T consists of measured temperature data. The temperature data T
is only known with a certain accuracy and only in a finite set of time
steps, which depends on performance of the infrared camera. The
kernel K is given as
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The aim is to find the virtual wave field Tvirt from the measured
temperature field T and the corresponding model K.

3. Inverse heat conduction problem

The dependent variable of the estimated parameter, in our case the
temperature T tr( , ), might be measured with infrared thermography at
one or two planes of a plate: =z L[0, ], where L is the thickness. The
temperature is recorded at many discrete times Nt after the thermal
stimulation. The discrete time is given by =t k Δk t, where Δt is the step
width of the time discretization and = …k N1, , t the number of time
steps.

3.1. Discretization and regularization

The main difficulties in the solution of inverse heat conduction
problems is that the ill-posed nature leads to a high sensitivity of the
solution in dependence of discretization and measurement errors,
especially when more than one parameter needs to be determined. The
Fredholm integral (Eq. (4)) is usually solved numerically by obtaining a
discrete approximation of the kernel (Eq. (5)). The measured tem-
perature Tk at discrete time steps k is given by
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where Kkj is the discrete kernel at the time steps j and k, respectively.
Herein, the integration operator was replaced by the summation op-
erator and ′dt by ′Δt . This results in a discrete kernel in the following
manner:
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where ′ = − ′t j( 1) Δj t is the virtual time at the j-th point with the step
width of discretization ′Δt . For the reconstruction of the virtual wave
T jvirt, , we consider a one-dimensional slab at =z 0 with the thickness L.
The z-axis is divided into Nz equally spaced elements. The width of each
element is denoted as Δz and each element is located at =z n Δn z with

= … −n N0, , 1z . The locations zn are referred as grid points. The
Fourier number Fo characterizes the transient heat conduction rate to
the storage rate. For a discrete time and space step the discrete Fourier
number Fo is calculated as = αΔ (Δ /Δ )Fo t z

2 . The dimensionless virtual
speed of sound = ′

−c c (Δ /Δ )͠ z t
1 is defined as the relation of the virtual

speed of sound c and spatially and temporal discretization ′(Δ /Δ )z t .The
Fredholm integral (Eq. (4)) can be also written as matrix equation in the
form of

=K T T,virt (8)

where Tvirt and T are the column vectors of the virtual wave and the
measured temperature signal at discrete time steps. The kernel K
( ×M N matrix) can be calculated for this time steps using Eq. (7).The
objective of the inverse problem is to determine the virtual wave field
that depends on the (noisy) temperature measurements of the output.
The Singular Value Decomposition (SVD) allows the analysis of the ill-
conditioned inverse problem. The matrix K has a deficient numerical
rank which results in a high condition number. The condition number C
is defined as the ratio between the largest and the smallest singular
values: =C μ μ/ N1 . It measures the solution's sensitivity to rounding and
measurement errors.The matrix K can be inverted only with appro-
priate regularization, that means additional information can stabilize
the solution. To treat the problem we use a direct numerical regular-
ization method - the Truncated Singular Value Decomposition (T-SVD)
[12]. We consider the matrix K as a noisy representation of a mathe-
matically rank-deficient matrix Ktrunc. The matrix K is replaced by a
truncated matrix Ktrunc, where the smallest non-zero singular values

…+μ μ, ,i N1trunc are substituted with exact zero, where itrunc is the trun-
cation index. The T-SVD of K is defined as the truncated matrix
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where = … ∈ ×U u u( , , )M
M M

1  and = … ∈ ×V v v( , , )N
N N

1  are matrices
with orthonormal vectors. In the diagonal matrix

= … … ∈ ×μ μΣ diag( , , , 0, , 0)i i
M N

1trunc trunc  the smallest singular values
<μ μi itrunc are replaced by zeros. ui and vi are the columns of the ma-

trices U and V , respectively. The regularized virtual waveTvirt,reg can be
calculated with the pseudo-inverse matrix −Ktrunc

1 .
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3.2. Derivation of the 1D virtual wave

In the most cases, the Fredholm integral Eq. (4) cannot be solved
directly because of its ill-posed nature. An exception is given, when
dealing with an infinite one-dimensional body. In this case, one can
obtain the solution directly from Eq. (4) using the fundamental heat
conduction solution [17].

3.2.1. The fundamental solution of the virtual wave
The Green's function solution equation for both, temperature T z t( , )

and virtual wave ′T z t( , )virt , appropriate for an initial condition
= =T z t F z( , 0) ( ) and infinite and constant-property body, can be

written as [18]:
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