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A B S T R A C T

In most structural systems, it is neither possible nor optimal to inspect all system components regularly. An
optimal inspection-repair strategy controls deterioration in structural systems efficiently with limited cost and
acceptable reliability. At present, an integral risk-based optimization procedure for entire structural systems is
not available; existing risk-based inspection methods are limited to optimizing inspections component by
component. The challenges to an integral approach lie in the large number of optimization parameters in the
inspection-repair process of a structural system, and the need to perform probabilistic inference for the entire
system at once to address interdependencies among all components. In this paper, we outline a methodology for
an integral risk-based optimization of inspections in structural systems, which utilizes a heuristic approach to
formulating the optimization problem. It takes basis in a recently developed dynamic Bayesian network (DBN)
framework for rapid computation of the system reliability conditional on inspection results. The optimization
problem is solved by nesting the DBN inside a Monte-Carlo simulation for computing the expected cost asso-
ciated with a system-wide inspection strategy. The proposed methodology is applied to a structural system
subject to fatigue deterioration and it is demonstrated that it enables an integral risk-based inspection planning
for structural systems.

1. Introduction

Deterioration processes in engineering structures lead to a reduction
of service life and can affect the safety of the structures. Accurate
modeling of deterioration remains a challenge today, due to the com-
plexity of the processes and their inherent uncertainties. To address
explicitly the prediction uncertainties, probabilistic approaches are
suitable for deterioration modeling in an engineering context
([21,7,31,45,32,72]).

To reduce the uncertainty in deterioration processes, regular in-
spections are common practice for most engineering structures. An
optimal inspection strategy balances the cost of inspections with the
achieved risk reduction. An inspection strategy defines [8]: (a) what to
inspect for (e.g., thickness diminution due to corrosion or erosion, fa-
tigue cracks), (b) how to inspect (the inspection technique), (c) when to
inspect, and (d) where to inspect (which components). Each combina-
tion of these factors defines an inspection strategy, among which the
optimal one is sought.

Methods for risk-based optimization of inspections on structural
systems have been developed during the past 40 years

[68,69,63,27,52,57,58,38]. The scientific literature also documents
industrial applications of inspection planning on offshore structures,
aircrafts, bridges or ships [51,43,10,22,11,35,6]. The theory and the
applications have focused almost exclusively on the optimization at the
component level, with a simplified treatment of the system [57]. Only
limited research efforts have been directed towards optimization pro-
cedures for entire systems, accounting for the statistical dependence
among the deterioration states of individual structural details
[56,57,54,42,33].

Risk-based optimization of inspection-repair strategies for large
engineering systems is challenging in practice. Firstly, the inter-
dependence among stochastic deterioration processes for all the system
components must be modeled. The two common approaches to such an
integral probabilistic deterioration modeling are random fields
[16,66,53,70,18] and hierarchical models [28,29,44,2,23]. Secondly,
Bayesian updating is required for computing the probability of failure
of all components and the system conditional on a potentially large
number of inspection results. This is a computationally challenging
problem in itself [49]. In the context of inspection planning, these
computations must be performed multiple times for the optimization of
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the inspection strategies. Thirdly, the inspection optimization must
consider system-wide strategies, which – in the general case – leads to a
number of optimization parameters that is exponentially increasing
with the number of components [57].

Bayesian methods enable incorporating information from inspec-
tions into probabilistic deterioration models to quantify the reduction
in uncertainty and to update the reliability estimate [61,26,36,60].
Bayesian Networks (BNs) can facilitate such analyses. BNs have been
applied to engineering risk analysis problems during the last two dec-
ades [64,13,30,9,15,36,12,67,3]. Conditional independence among
model parameters encoded in the graphical structure of the BN can
facilitate the Bayesian updating. In addition, if a process can be re-
presented by discrete random variables (e.g. by discretizing all con-
tinuous random variables), exact inference algorithms can provide fast
and robust solutions to the Bayesian updating. These properties have
been exploited in Straub [54] and Luque and Straub [25], where dy-
namic Bayesian networks (DBNs) are utilized to evaluate deterioration
at the component and system level. Bespoke exact inference algorithms
ensure rapid computation of the conditional probability of system
failure given all inspection results, which is essential for solving the
optimal inspection problem.

In this paper, we propose a heuristic approach to finding the optimal
inspection strategy in structural systems. In contrast to existing
methods, the approach can simultaneously account for system effects
arising from (a) the dependence among the deterioration at different
components, (b) the joint effect of deterioration at multiple components
on the system reliability, and (c) the interaction among inspection costs,
i.e. the reduction in the marginal cost of an inspection if these are
grouped in larger inspection campaigns. This is achieved with the
proposed heuristic approach to the optimization, which enables the
definition of a system-wide inspection plan with just a few parameters.
The optimization criterion is the total expected life-cycle cost, whose
computation is made feasible by a novel two-level approach, in which
the system DBN algorithm of Luque and Straub [25] is nested within a
Monte-Carlo simulation that addresses the uncertainty on the inspec-
tion outcomes. The DBN algorithm allows to compute the conditional
probability of system failure given inspection outcomes.

The proposed methodology is demonstrated and investigated by
application to a Daniels system, an idealized redundant structural
system, whose components are subject to fatigue deterioration.

2. Methodology

2.1. The inspection optimization problem

An inspection strategy for a structural system defines when, where,
what and how to inspect. In general, static inspection regimes are not
optimal; instead, one should account for results from previous inspec-
tions and maintenance activities when deciding upon new inspections.
For this reason, the optimal inspection-planning problem belongs to the
class of sequential decision problems [1,19].

The sequential inspection planning problem is visualized in the
decision tree of Fig. 1. Branches following a circular node represent
random outcomes (e.g. the deterioration state of the system, or the
inspection outcomes) and branches after a square node represent pos-
sible decision alternatives (e.g. if and where to inspect or repair). This
decision tree is equally applicable to single components or entire sys-
tems. When considering systems, the outcome space of the random
variables and the number of decision alternatives increase ex-
ponentially with the number of components. This is one of the main
reasons why previous work on risk-based inspection planning has fo-
cused mainly on individual components.

Solutions to sequential decision problems can be found through the
definition of policies. Here, a policy for a decision at time t defines
where, what and how to inspect and repair, taking into account the full
history of the structure up to t , i.e. past inspection outcomes and repair

actions. The set of policies at all times t is the strategyS . If the policies
are the same for all t , the strategy is stationary [17].

For a structural system with N components subject to deterioration,
the inspection optimization problem of Fig. 1 can be formalized as
follows. The joint deterioration state D of all components is represented
through a probabilistic system deterioration model with random para-
meters XD. Each component can be inspected and/or repaired at dis-
crete times t from 0 to the end of service life T . The strategyS defines
for each component at each time step if and how that component is
inspected and repaired, based on all previous inspection outcomes Z
and the repair history of the structure.

Inspections, repairs and system failure are associated with con-
sequences. These are quantified by the present value of total life-cycle
cost CT in function of the strategyS and the inspection outcomes Z. It
is defined as the sum of the life-time inspection cost CI , repair cost CR,
and failure risk RF :

S S S S= + +C C C RZ Z Z Z( , ) ( , ) ( , ) ( , )T I R F (1)

For a given strategy S and inspection outcomes Z, the inspection
and repair actions are fixed. Hence, SC Z( , )I and SC Z( , )R can be di-
rectly evaluated in function of the cost of individual inspections and
repairs, and the relevant discount rate.

The failure risk RF is defined as:
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where cF is the undiscounted cost of a system failure event, γ t( ) is a
discount factor, Ft is the event of a system failure during time step t , and
ES t, is the system condition at time step t .

The conditional probability = −E Fail ZPr( | )S t t, 0: 1 is the probability of a
system failure up to time t for given inspection outcomes −Z t0: 1. Its
computation is a structural reliability problem, which can be for-
mulated as an integral over all random variables X of the problem
(which include the deterioration parameters XD, but also load para-
meters):

∫= = ⩽− −E Fail Z g x f x xPr( | ) [ ( ) 0]· ( )dS t t S t x Z, 0: 1
Ω

, | t
x

0: 1
(3)

≤g x( ) 0S t, is the limit state function describing system failure up to t ,
∙I [ ] is the indicator function and −fX Z| t0: 1 is the conditional probability

density function of X given inspection outcomes −Z t0: 1.
The solution of Eq. (3) is non-trivial, in particular if the system size

and the number of observations are large. First Order Reliability
Method-(FORM) and sampling-based solutions to this problem are
available [55,60,49]. In inspection planning, the conditional prob-
ability must be evaluated many times, and an efficient and robust so-
lution of Eq. (3) is thus required. For this reason, we apply DBNs to
solve Eq. (3) following Luque and Straub [25].

Because the inspection outcomes Z are random variables themselves
and are not known in advance, the total cost is also a random variable.
If fZ is the probability distribution of the vector of inspection outcomes,
whose support SΩZ( ) depends on the strategy S , then the expected
total life-cycle cost associated with the strategy S is obtained as

∫=C S C S fZ z z zE [ ( , )] ( , ) ( )dT TZ Z
Ω SZ( ) (4)

The optimal strategy S∗ is defined as the one that minimizes the
expected total cost:

S S
S

=∗ C ZargminE [ ( , )]TZ (5)

This optimization is commonly subject to constraints on the
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