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A B S T R A C T

This work aims at the development of an advanced method for the seismic design of Moment Resisting Frames
(MRFs) based on a target value of the failure probability in the attainment of a collapse mechanism of global type
for stochastic frames (considering the aleatoric uncertainty of the material properties). Therefore, the method
herein presented constitutes the probabilistic version of the Theory of Plastic Mechanism Control (TPMC) al-
ready developed for frames with deterministic material properties. With reference to MRFs whose members have
random values of the yield strength, when structural collapse is of concern, the failure domain is related to all the
possible collapse mechanisms. Within the probabilistic TPMC, the term “failure” does not mean the attainment of
a structural collapse, but the development of a collapse mechanism different from the global one.

The design requirements normally needed to prevent undesired collapse mechanisms are probabilistic events
within the framework of the kinematic theorem of plastic collapse. The limit state function corresponding to
each event is represented by a hyperplane in the space of random variables, so that the failure domain is a
surface resulting from the intersection of the hyperplanes corresponding to the limit states representing the
single failure events. Since plastic hinges in frame’s members are common to many different mechanisms, the
single limit state events are correlated. Therefore, by applying the theory of binary systems and considering that
the limit states are events located in series, the probability of failure can be computed by means of Ditlevsen
bounds. This approach has been validated by means of Monte Carlo simulations.

In order to achieve a predefined level of reliability in the attainment of the design goal, the reliability analysis
is repeated for increasing values of the overstrength factor of the dissipative zones to be used in TPMC, aiming to
its calibration. Finally, on the basis of the results of a parametric analysis, a simple relationship to compute the
value of the overstrength factor needed to include the influence of random material variability in the application
of TPMC is proposed.

1. Introduction

It is well known that the control of the collapse mechanism is of
primary importance in the seismic design of structures to assure ade-
quate global ductility and energy dissipation capacity. Specifically,
structures exhibiting soft storey or partial mechanisms are not able to
exploit their plastic reserves and are subjected to damage concentration
phenomena. For this reason, it is universally recognised that the op-
timum seismic performances are obtained when a collapse mechanism
of global type occurs. Modern seismic codes (Eurocode 8, AISC) [1,2]
provide simplified design rules to prevent unsatisfactory collapse me-
chanisms, such as the use of the so-called beam-column hierarchy cri-
terion (strong column-weak beam design methodology according to
American terminology) for Moment Resisting Frames (MRFs). However,

this criterion is usually able to prevent soft storey mechanism only, but
it does not assure the development of a collapse mechanism of global
type [3,4]. In order to overcome the drawbacks of code provisions, the
Theory of Plastic Mechanism Control (TPMC) has been developed [3,4]
by extending the kinematic theorem of plastic collapse to the concept of
mechanism equilibrium curve. Such approach, including the influence
of second order effects, allowed the definition of the design conditions
to prevent all the undesired collapse mechanisms, up to an ultimate
displacement compatible with the local ductility supply of structural
members.

Up to now, TPMC has been already applied to deterministic struc-
tures having different seismic resistant schemes [5–11] and structural
material [12]. The reason of the success relies on the robustness of the
theoretical background based on the kinematic theorem of plastic
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collapse and on second order rigid plastic analysis. However, even in
the case of structures designed by TPMC, undesired collapse mechan-
isms could occur when the effects of random material variability are
taken into account. This is the case of stochastic steel frames, whose
members have random plastic moments due to the aleatoric uncertainty
of the yield strength of steel.

The problem of undesired effects in plastic mechanism control, due
to random material uncertainty, are also recognised by modern seismic
codes that, aiming to compensate such effects, suggest the use of
overstrength factors for the evaluation of the ultimate resistance of
dissipative zones within hierarchy criteria. As an example, ANSI/AISC
341-10 [2] computes the ultimate resistance of dissipative zones cov-
ering the effects of uncertainty of yield strength by means of a factor
given by the ratio between the average yield strength of steel and its
nominal value. This is the so-called overstrength factor in material yield
stress, denoted with Ry in ANSI/AISC 341-10. Conversely, Eurocode 8
[1] provides an overstrength factor γov (having the same aim of Ry)
ranging between 1.0 and 1.25. However, these values, applied within
the beam-column hierarchy criterion, are not based on a probabilistic
assessment aimed at a specific collapse mechanism.

It is also useful to point out that the overstrength factor, γov ac-
cording to EC8 or Ry according to ANSI-AISC 341-10, refers to the
overstrength due to the random variability of yield stress. Conversely,

the system overstrength Ω0, adopted both in ANSI-AISC 341-10 [2] and
ASCE 7-10 [39] is related to the overall plastic redistribution capacity
of the structural scheme.

In this work, the attention is focused on the calibration of γov (or Ry)
with the aim to properly accounting for the influence of random ma-
terial variability (i.e., yield stress variability) on the control of the
collapse mechanism typology.

As in the last two decades many researchers devoted their efforts to
probabilistic-based approaches for assessing the collapse of structures
under dynamics seismic loadings [25–38], it is worthwhile mentioning
that these efforts are aimed at the evaluation of the mean annual fre-
quency of exceeding the limit state corresponding to different perfor-
mance levels [27,30]. In particular, FEMA P695 is devoted to the
quantification of the building seismic performance factors by properly
including the different sources of uncertainties [28]. Conversely, the
work herein presented is not aimed to such performance assessment,
but to the control of the collapse mechanism typology. For this reason,
the use of a static approach is justified considering that the control of
the collapse mechanism typology can be based on the kinematic the-
orem of plastic collapse as described in Section 3. The accuracy of such
approach is testified by past works on deterministic TPMC [5,11] where
the attainment of a collapse mechanism of global type was successively
validated using incremental dynamic non-linear analyses.

Nomenclature

α g
0
( ) First order collapse mechanism multiplier of horizontal

forces for the global mechanism
α i i

t
0. .
( )

b t First order collapse mechanism multiplier of horizontal
forces for the generic mechanism

βC Vector of reliability (or Cornell) indexes
γ g( ) The slope of the mechanism equilibrium curves for the

global mechanism
γi i

t
.

( )
b t

The slope of the mechanism equilibrium curves for the
generic mechanism

γov Overstrength factor
Γ sb( ) Vector of coefficients accounting for second order effects

in case of global mechanism and shear band mechanisms
Γ up( ) Vector of coefficients accounting for second order effects

in case of global mechanism and upper partial mechan-
isms

δ Top sway displacement
δu The design displacement compatible with the ductility

supply of the structure
μG Mean value of G
μx Vector of means of x
ρ Correlation coefficient between y1 and y2
ρij Correlation coefficient between i-th and j-th events
σG Standard deviation of G
σG

2 Covariance matrix of G
Φ Standard Gaussian CDF
a0 Vector the known quantities

bb ,i j i-th and j-th row of B matrix
B Matrix of deterministic coefficients
Bb

sb( ) Submatrix of coefficients of sum of the plastic moments of
beams at each storey with reference to events related to
the “shear band” mechanisms

Bc
sb( ) Submatrix of coefficients of sum of the plastic moments of

columns at each storey with reference to events related to
the “shear band” mechanisms

Bb
up( ) Submatrix of coefficients of sum of the plastic moments of

beams at each storey with reference to events related to
the “upper partial” mechanisms

Bc
up( ) Submatrix of coefficients of sum of the plastic moments of

columns at each storey with reference to events related to
the “upper partial” mechanisms

cov Coefficient of variation
Cx Vector of covariance of x
E [] Linear operator (expected value)
Ei i

t
.

( )
b t Failure event

Fk The seismic force applied at k-th storey
xG( ) Function of the random vector x

hk Storey height of the k-th storey
h h,i ib t Storey height of the ib-th storey or it-th storey
hns Sum of the interstorey heights of the storeys involved by

the generic mechanism
i Column index
i i,b t Mechanism index
j Bay index
k Storey index
Mb j k. . The plastic moment of the beam of j-th bay at k-th storey
Mc i k. . the plastic moment of i-th column of k-th storey
n Size of the frame sample in MC simulation
n0 Number of the failure cases in MC simulation
nb Number of bays for each storey
nc Number of columns for each storey
ns Number of storeys
Ntot Total number of possible mechanisms
pf Vector of probability of the failure events
Pf Probability of failure
Pf i. Probability of failure of i-th event
Pf ij. Joint probabilities between i-th and j-th events
R Reliability factor
sb Shear band mechanisms
t Mechanism index
up Upper partial mechanisms
Vk The total gravity load applied at k-th storey
x Vector random variables
xb Vector collecting the sum of the plastic moments of beams

at each storey
xc Vector collecting the sum of the plastic moments of col-

umns at each storey
y y,1 2 Independent standard Gaussian variables
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