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This paper presents a global manifold margin learning approach for data feature extraction or dimensionality
reduction, which is named locally linear representation manifold margin (LLRMM). Provided that points locating
on one manifold are of the same class and those residing on the corresponding manifolds are varied labeled,
LLRMM is desired to identify different manifolds, respectively. In the proposed LLRMM, it firstly constructs both a
between-manifold graph and a within-manifold graph. In the between-manifold graph, for any point, its k nearest
neighbors and itself must belong to different manifolds. However, any node and its neighborhood points should
be on the same manifold in the within-manifold graph. Then we use the minimum locally linear representation
trick to reconstruct any node with their corresponding k nearest neighbors in both graphs, from which a between-
manifold graph scatter and a within-manifold graph scatter can be reasoned, followed by a novel global model of
manifold margin. At last, a projection will be explored to map the original data into a low dimensional subspace
with the maximum manifold margin. Experiments on some widely used face data sets including AR, CMU PIE,
Yale, YaleB and LFW have been carried out, where the performance of the proposed LLRMM outperforms those of
some other methods such as kernel principal component analysis (KPCA), non-parametric discriminant analysis
(NDA), reconstructive discriminant analysis (RDA), discriminant multiple manifold learning (DMML) and large
margin nearest neighbor (LMNN).

1. Introduction thus the supervised information do not play its role in the following

feature extraction and classification (Yang and Zhang, 2008). However,

For image pattern classification besides face recognition, it often
rewrites the original data to high dimensional vectors. For instance,
an appearance-based face image with size 80*80 can be transformed
to a 6400-dimension vector. So it is required to extract discriminant
features from the high dimensional vectors before making classification
to them, which will contribute to improving recognition performance
with low computational expense. Currently, researchers have reported
many dimensionality reduction or feature extraction methods where
both the linear and the nonlinear models are all involved (Wang et
al., 2016; Yu et al., 2016; Sadatnejad and Ghidary, 2016; Motta et al.,
2015). Moreover, they have been widely used in many applications with
convincing performances (Zhang et al., 2016b, a; Sun et al., 2013; Zhang
et al., 2016c¢).

As a traditional linear feature extraction method, principal compo-
nent analysis (PCA) aims to locate a subspace where the covariance of
all the original data can be maximized (Jolliffe, 2002). Meanwhile, it
should be noted that no class information is taken into account in PCA,
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another classical linear method, i.e. linear discriminant analysis (LDA),
constructs an objective function by taking full consideration of data
class labels (Kim et al., 2011; Martinez and Kak, 2001). In general, LDA
projects the original data into a subspace with the maximum between-
class apartness and the minimum within-class compactness.

The above mentioned methods concentrate on global linear structure
of the original data and fail to dig nonlinear information hidden in them,
which has been validated to be useful for dimensionality reduction
(Tenenbaum et al., 2000; Roweis and Saul, 2000). Thus some nonlinear
learning techniques are prevailing. As one kind of famous nonlinear
models, neural networks have been attracting more and more attentions.
In 1996, Huang (2004a, b) systematically concluded the theory of
neural networks and their applications to pattern recognition. Moreover,
neural networks have also been used to find polynomial roots (Huang,
2004a, b; Huang et al., 2005). On the basis of the traditional neural
networks, radial basis probabilistic neural network (RBPNN) is con-
structed by a constructive hybrid strategy (Huang and Du, 2008). The

Received 25 September 2017; Received in revised form 21 March 2018; Accepted 6 August 2018

0952-1976/© 2018 FElsevier Ltd. All rights reserved.


https://doi.org/10.1016/j.engappai.2018.08.004
http://www.elsevier.com/locate/engappai
http://www.elsevier.com/locate/engappai
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2018.08.004&domain=pdf
mailto:liberol@126.com
https://doi.org/10.1016/j.engappai.2018.08.004

B. Lietal

proposed RBPNN has also been introduced for biometric identification
(Shang et al., 2006; Zhao et al., 2004). However, neural networks
optimize weights between nodes with so many iterations that much
more computational cost will be paid when dealing with real world data.

In addition, kernel transformations, i.e. kernel principal component
analysis (KPCA) (Scholkopf et al., 1998; Wen et al., 2012) and kernel
Fisher discriminant analysis (KFDA) (Yang et al., 2004), are also pre-
sented to implicitly map observations into a space with high dimension-
ality, where they can be linearly classified. However, not local geometry
but global structure information is approached from high-dimensional
data using both KPCA and KFDA. Under such circumstances, manifold
learning is put forward to explore manifold geometry hidden in the high
dimensional data by locality learning.

It is well known that many manifold learning methods have been
presented during last decade (Tenenbaum et al., 2000; Roweis and Saul,
2000; Saul and Roweis, 2003; Donoho and Grams, 2003; Belkin and
Niyogi, 2003; Zhang and Zha, 2005; Weinberger and Saul, 2006; Lin
and Zha, 2008). Among them, all the local patches on manifold are
determined using k nearest neighbors or super-ball criterion, where
linear tricks can be well performed to find the locality of manifold. More-
over, by taking advantage of data class information, some modifications
are also made to them. For example, marginal Fisher analysis (MFA)
(Xu et al., 2007; Yan et al., 2007) and discriminant multi-manifold
learning (DMML) (Lu et al., 2013) construct two different graphs to
represent the within-class compactness and the between-class separa-
bility, respectively. Additionally, by carrying out traditional LDA to all
the local patches, local Fisher discriminant analysis (LFDA) (Sugiyama,
2006), non-parametric discriminant analysis (NDA) (Li et al., 2009) and
reconstructive discriminant analysis (RDA) (Yang et al., 2008; Chen and
Jin, 2012) maximize the trace ratio of the local inter-class graph scatter
to the local intra-class graph scatter to find an optimal subspace. All
the objective functions of these methods are under framework of trace
ratio, which often incurs small sample size problem (Kim et al., 2011).
To prevent the problem, locality sensitive discriminant analysis (LSDA)
defines a local margin, which can be deduced to difference between
the local inter-class graph scatter to the local intra-class graph scatter
(Cai et al., 2007). However, it just pays more attentions to separateness
between local patches. Another manifold learning based dimensionality
reduction method titled local discriminant embedding (LDE) models
two graphs based on data neighborhood and class relation, and then
two graph Laplacians are used to find low-dimensional embeddings
(Chen et al., 2005). Recently, a novel manifold method, i.e. t-distributed
stochastic neighbor embedding (t-SNE), has also been focused on and
high performances have been achieved by using it for feature extraction
and pattern recognition (van der Maaten, 2014). However, both LDE
and t-SNE show no concern on global manifold margin, which can
characterize the total apartness of all the manifolds.

Thus how to globally measure all the manifolds’ margin still needs
further demonstration. In this paper, we will propose a globally defined
manifold margin metric with locally linear representation strategy that
can be introduced to measure apartness among all the manifolds. Based
on the proposed manifold margin, a locally linear representation man-
ifold margin (LLRMM) method will be put forward for multi-manifold
identification. The main contributions of the proposed LLRMM are listed
below:

(1) Although manifold margin is firstly proposed in the conference
paper with a simply version (Li et al., 2015), in this paper, it is
also presented to characterize the global apartness among different
manifolds with a graphical illustration. Moreover, more details are
offered either from the construction of three kind graphs and their
corresponding scatters using the minimum linear representation trick
or from theoretical derivations of the proposed manifold margin.

(2) Based on the proposed manifold margin, LLRMM is also put
forward to extract discriminant features accompanying with its outline.

(3) Much more experiments on benchmark face data such as AR,
CMU PIE, Yale, YaleB and LFW are carried out to obtain the statistics
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results including mean recognition rates and standard deviations, from
which the performance of the proposed LLRMM can be validated.

The rest of the paper is organized as follows. The proposed algorithm
is described and justified in Section 2. Section 3 presents the experimen-
tal results on face data accompanying with some discussions. At last, it
draws some conclusions and makes some expectations for the future
work in Section 4.

2. Locally linear representation manifold margin
2.1. Motivation

Recently, many supervised extensions have been made to LLE to deal
with data classification problem. In these methods, some are proposed
by combining LDA to LLE (Zhang et al., 2004, 2006; Pang et al., 2006;
de Ridder et al., 2004; Li et al., 2008), some other take class information
into account to direct the construction of local graph. However, when
constructing k nearest neighbor graph, some distances between varied
labeled nodes may be shorter than those between points sampled from
the same class, which will lead to wrong neighborhood selection for
discriminant analysis. In order to overcome the problem, some methods
are put forward either by adjusting distances between nodes or by
just selecting neighbors from nodes with the same class (de Ridder
et al., 2003; Wen and Jiang, 2006; Zhang and Zhao, 2007; Zhao and
Zhang, 2009; Hui and Wang, 2008; Zhao et al., 2005; Han et al., 2008).
Assume that points locating on one manifold are of the same class
and those residing on the corresponding manifolds are sampled from
varied labeled data, these approaches are aiming to construct a k nearest
neighbor graph to characterize the within-manifold data. However, they
ignore to set up another k nearest neighbor graph which is composed of
the between-manifold data. Thus both the within-manifold graph and
the between-manifold graph will be constructed, by which a manifold
margin metric can be globally proposed to quantify the apartness among
different manifolds. At the same time, following the within-manifold
graph and the between-manifold graph, a total-manifold graph will also
be introduced to measure locality of all the samples without considering
manifold label information. Compared to the original LLE (Lawrence,
2001), which is an unsupervised dimensionality reduction method,
the proposed LLRMM takes manifold label information into account
to construct a between-manifold graph and a within-manifold graph,
respectively. In the between-manifold graph, any node and its k nearest
neighbors must belonging to different manifolds. Thus the distances
between multiple manifolds may exist in the between-manifold graph,
which shows close relation to the expected global manifold margin.

Fig. 1 illustrates the proposed LLRMM method, where binary classi-
fication problem is involved. In Fig. 1, there are two differently labeled
manifolds M1 and M2. For one point in a manifold M1, its four within-
manifold nearest neighbors are selected to be composed of its within-
manifold graph. Meanwhile, it also chooses other four nearest neighbors
on another manifold to consist of its between-manifold graph. However,
from the left sub-figure in Fig. 1, it can be found that two manifold
data are mixed together and cannot be distinguished in the original high
dimensional space. So in order to identify these two manifold data, it is
expected to find a low dimensional subspace to maximize the manifold
margin shown in right subfigure in Fig. 1.

But how to define the global manifold margin is still a problem.
In the following, it will be reasoned from the within-manifold graph
scatter and the between-manifold graph scatter using the minimum
linear representation technique.

2.2. Locally linear representation weights

When constructing the within-manifold graph, both local geometry
and manifold label information are all employed. On one hand, any node
and its neighborhood should be on a manifold in the within-manifold
graph. On the other hand, its local neighborhood should be composed
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