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A B S T R A C T

This paper proposes an optimal bidding strategy for autonomous residential energy management systems. This
strategy enables the system to manage its domestic energy production and consumption autonomously, and
trade energy with the local market through a novel hybrid interval-stochastic optimization method. This work
poses a residential energy management problem which consists of two stages: day-ahead and real-time. The
uncertainty in electricity price and PV power generation is modeled by interval-based and stochastic scenarios in
the day-ahead and real-time transactions between the smart home and local electricity market. Moreover, the
implementation of a battery included to provide energy flexibility in the residential system. In this paper, the
smart home acts as a price-taker agent in the local market, and it submits its optimal offering and bidding curves
to the local market based on the uncertainties of the system. Finally, the performance of the proposed residential
energy management system is evaluated according to the impacts of interval optimistic and flexibility coeffi-
cients, optimal bidding strategy, and uncertainty modeling. The evaluation has shown that the proposed optimal
offering model is effective in making the home system robust and achieves optimal energy transaction. Thus, the
results prove that the proposed optimal offering model for the domestic energy management system is more
robust than its non-optimal offering model. Moreover, battery flexibility has a positive effect on the system’s
total expected profit. With regarding to the bidding strategy, it is not able to impact the smart home’s behavior
(as a consumer or producer) in the day-ahead local electricity market.

1. Introduction

1.1. Aims and approaches

Customers are going to play a key role in the prospective power
systems [1]. This will be possible because power will no longer be
generated at centralized facilities, instead different technologies will be
used to generate energy locally, this is called distributed generation.
The infrastructure of smart grid makes this transition possible [1]. Thus,
in power distribution systems’ demand-side players – e.g. smart homes
– will manage their own electrical energy according to the real and fair
price [2]. Besides, current electricity markets are not able to satisfy
customers’ strategic behavior based on their autonomous decision-
makings [3]. Hence, decentralized electricity markets are capable of
adapting to the flexible behavior of electrical customers. In this way,

smart homes are active agents and play a critical role in the bottom
layer of the power systems. Smart homes are prosumers, this means
they can be both producers and consumers. Hence, smart homes need
energy management systems in order to make optimum decisions re-
lated to the management of energy inside the home, such as the choice
of the best strategies when trading energy with other players (e.g. ag-
gregators, retailers, local market operator, other consumers) in the
distribution power network. In this way, distribution power networks
are defined as complex ecosystems consisting of machines, networks,
procedures, operators, and players which are organized hierarchically
in the bottom layer of power systems in order to deliver electric power
to end-users [34]. Different studies have considered distinct aspects of
Residential Energy Management Systems (REMSs), e.g. residential
electrical appliances [7], the main purposes of residential scheduling
[8,15], decision-making under uncertainty [2], the implementation of
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Nomenclatures

Indices

t index of time periods
j index of electrical loads
ω index of real-time scenarios

Objective function variables

EP expected profit ($)

Day-ahead variables

λ t( )da day-ahead electricity price at time period t (€/kW h)
C t( )da day-ahead state of the charge of the battery at time period

t (kW h)
EL t( )da day-ahead home energy consumption at time period t

(kW h)
k t( ) day-ahead Dispatched status of PV power system at time

period t
P t( )ch

da day-ahead battery energy charged at time period t (kW h)
P t( )dis

da day-ahead energy discharged from the battery at time
period t (kW h)

P t( )dis in
da

, day-ahead discharged energy of the battery that is injected
to the smart home at time period t (kW h)

P t( )dis out
da

, day-ahead energy discharged from the battery that is in-
jected into the power grid at time period t (kW h)

P t( )pv in
da

, day-ahead PV energy generation that is injected to the
smart home at time period t (kW h)

P t( )pv out
da

, day-ahead PV energy generation that is injected into the
power grid at time period t (€/kWh)

P t( )pv p
da

, day-ahead PV energy generation at time period t (kW h)
P t( )net

da day-ahead energy purchased from the local market at time
period t (kW h)

P t( )sold
da day-ahead energy sold from home to the local market at at

time period t (kW h)
u t( )da day-ahead discharging commitment binary variable for

the battery at time period t
v t( )da day-ahead transacted energy status at time period t (kW h)

Real-time variables

P t ωΔ ( , )sold
rt real-time sold energy from home to the local market in

scenario ω and at time period t (kW h)
P t ωΔ ( , )net

rt real-time energy purchased from the local market in
scenario ω and at time period t (kW h)

θ t ω( , )in indoor temperature in scenario ω and at time period t (°C)
C t ω( , )rt real-time state of charge of the battery in scenario ω and at

time period t (kW h)
EL t ω( , )rt real-time home energy consumption in scenario ω and at

time period t (kW h)
EL t ω( , )j

rt real-time energy consumption of load j in scenario ω and
at time period t (kW h)

EL t ω( , )mrs
rt real-time energy consumed by the must-run services in

scenario ω and at time period t (kW h)
EL t ω( , )pp

rt real-time energy consumed by the pool pump in scenario ω
and at time period t (kW h)

EL t ω( , )sh
rt real-time energy consumed by the space heater in scenario

ω and at time period t (kW h)
EL t ω( , )swh

rt real-time energy consumed by the storage water heater
in scenario ω and at time period t (kW h)

ES t ω( , )rt load shedding of home in scenario ω and at time period t
(kW h)

ES t ω( , )j
rt shedding of load j in scenario ω and at time period t (kW h)

ES t ω( , )mrs
rt load shedding of the must-run services in scenario ω and

at time period t (kW h)
ES t ω( , )pp

rt load shedding of the pool pump in scenario ω and at time
period t (kW h)

ES t ω( , )sh
rt load shedding of the space heater in scenario ω and at time

period t (kW h)
ES t ω( , )swh

rt load shedding of the storage water heater in scenario ω
and at time period t (kW h)
L t ω( , )mrs

rt real-time load of the must-run services in scenario ω and at
time period t (kW)

L t ω( , )pp
rt real-time load of the pool pump in scenario ω and at time

period t (kW)
L t ω( , )sh

rt real-time load of the space heater in scenario ω and at time
period t (kW)

L t ω( , )swh
rt real-time load of the storage water heater in scenario ω

and at time period t (kW)
P t ω( , )ch

rt real-time battery energy charged in scenario ω and at time
period t (kW h)

P t ω( , )dis
rt real-time energy discharged from the battery in scenario ω

and at time period t (kW h)
P t ω( , )dis in

rt
, real-time energy discharged from the battery that is in-

jected into the smart home in scenario ω and at time
period t (kW h)
P t ω( , )dis out

rt
, real-time energy discharged from the battery that is

injected into the power grid in scenario ω and at time
period t (kW h)
P t ω( , )pv

rt real-time PV energy generation in scenario ω and at time
period t (kW h)

P t ω( , )pv in
rt

, real-time PV energy generation that is injected into the
smart home in scenario ω and at time period t (kW h)

P t ω( , )pv out
rt

, real-time PV energy generation that is injected into the
power grid at scenario ω and at time period t (kW h)

S t ω( , )PV energy spilled from PV in scenario ω and at time period t
(kW h)

u t ω( , )rt real-time discharging commitment binary variable for the
battery in scenario ω and at time period t

v t ω( , )rt day-ahead transacted energy status at scenario ω and at
time period t

z t ω( , ) operation status of the pool pump in scenario ω and at
time period t

Parameters

αprice optimistic coefficient of price
αpv optimistic coefficient of PV energy generation
σ t( )price

dn lower bound predicted price error at time period t
(€/kWh)

σ t( )price
up upper bound predicted price error at time period t

(€/kWh)
σ t( )pv

dn lower bound predicted error for PV energy generation at
time period t (kW h)

σ t( )pv
up upper bound predicted error for PV energy generation at

time period t (kW h)
λ t( )da day-ahead electricity price at time period t (€/kW h)
λ t( )pred day-ahead price prediction at time period t (€/kW h)
λ t ω( , )net

rt price of the electrical energy purchased from the real-time
local market in scenario ω and at time period t (€/kW h)

λ t ω( , )sold
rt price of the electrical energy sold to the real-time local

market in scenario ω and at time period t (€/kW h)
ηB H2 discharging efficiency of the battery
ηH B2 charging efficiency of the battery
γ flexibility coefficient
πω probability of real-time scenarios in scenario ω
θdes

in desired indoor temperature (°C)
θi

in initial indoor temperature (°C)
θ t ω( , )out pred, predicted outdoor temperature in scenario ω and at
time period t (°C)

A. Shokri Gazafroudi et al. Electrical Power and Energy Systems 105 (2019) 201–219

202



Download English Version:

https://daneshyari.com/en/article/9952107

Download Persian Version:

https://daneshyari.com/article/9952107

Daneshyari.com

https://daneshyari.com/en/article/9952107
https://daneshyari.com/article/9952107
https://daneshyari.com

