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A B S T R A C T

We present approximate solutions to the compressible Reynolds equation and the corresponding temperature
equation which are valid for large speed numbers in the dense and supercritical gas regime. The flows are taken
to be two-dimensional, steady, compressible, single-phase and laminar. New results include explicit formulas for
pressure, density, temperature, and heat flux in terms of the speed number, film thickness function, and the
material functions. We have found that the first correction for finite speed number will depend on the local
values of the effective bulk modulus and thermal expansion coefficient. Our approximations are compared to
numerical solutions to the exact Reynolds theory. It was found that the first order approximation is necessary to
obtain realistic pressure and temperature distributions.

1. Introduction

In many applications involving lubrication theory, the Reynolds
equation plays a central role. Since first stated by Osborne Reynolds in
1886 [1], the Reynolds equation has been extended to include the ef-
fects of unsteadiness, turbulence, three-dimensionality, non-newtonian
fluids and thermal effects [2–5]. While the conditions leading to the
Reynolds approximation are frequently satisfied in many applications,
see, e.g. Refs. [6–10], further motivation for studies of the Reynolds
equation is that it provides valuable insights into more complex lu-
brication flows while in a relatively simple context.

Historically, large viscosity liquids are employed as lubricating
fluids. In recent years there has been considerable interest in the use of
both low and high pressure gases as working fluids [11–15]. The ad-
vantage of gases over large viscosity liquids include significant weight
reduction, elimination of fouling and complications due to phase
changes and the incompatibility with working fluids in power systems.
Because the viscosities of gases tend to be smaller than those of liquid
lubricants, lubricating gas flows require larger shear strains and are
frequently compressible.

The theory of low pressure gas lubrication is well established in the
literature where the perfect gas model is coupled with the Reynolds
equation to account for compressibility effects [2–5]. The resulting
Reynolds equation in these studies is typically cast as a nonlinear dif-
ferential equation for pressure [2–5]. Both numerical and perturbation
techniques are commonly employed to obtain solutions to the Reynolds

equation. One of the first to derive perturbation solutions for low
pressure gas films for high and low speed flows, i.e., large and small
speed numbers (or bearing numbers) was Gross [5]. Peng and Khonsari
[16] applied similar approach to estimate the lowest order hydro-
dynamic pressure for foil bearings with large speed numbers and ideal
gases.

When the thermodynamic state is such that the lubricating fluids are
no longer ideal, i.e., are in the dense or supercritical gas regimes, one
must account for a strong dependence of material properties on the
thermodynamic state and on rapid changes and singularities in the flow
variables. In fact, even the validity of the Reynolds equation must be
questioned in the supercritical gas regime, see, e.g., Chien, et al.
[17,18]. Previous investigations such as [19–23] apply pure numerical
schemes to different versions of the Reynolds equation. These studies
account for the real-gas behavior of the lubricating gas through use of
digital table look-ups. For example, studies [19–21] employed the NIST
REFPROP database [24] and Guenat and Schiffmann [22] used the
COOLPROP database [25]. Dousti and Allaire [23] have modeled the
real gas behavior with a linear pressure-density relation, but this model
is not expected to be valid over the full range of pressures and tem-
peratures corresponding to the dense and supercritical regimes [26].

Because of the well known singularities in the supercritical gas re-
gime, Chien, et al. [17] have carried out a detailed justification of the
Reynolds equation. Limitations on the Reynolds equation were given.
The corresponding simplified temperature equation was also derived.
Even when the traditional thin film and lubrication approximations are
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valid, it was shown that the Reynolds equation and its corresponding
temperature equation break down simultaneously in the vicinity of the
thermodynamic critical point. Solutions to Chien et al.'s [17,18] Rey-
nolds and temperature equation were compared to solutions of the full
Navier-Stokes equations revealing excellent agreement in the stated
range of validity of the theory.

The goal of the present study is to develop explicit analytical solu-
tions for density, pressure, temperature, and wall heat flux for high
speed lubrication flows corresponding to a simple journal bearing. We
follow the approach of [19–22] in that we analyze the Reynolds
equation. In particular, we base our calculations on the Reynolds and
temperature equation derived by Ref. [17]. We take the speed (or
bearing) number to be large and present the first correction to the
lowest order theory; here the term “lowest order” will typically refer to
the approximation corresponding to an infinite speed number. The
advantage of this work is that the dependence on speed number and
thermodynamic state is explicit. The present work complements the
extensive, but purely numerical, previous studies of pressurized gases
[19–22] and the perturbation analysis of ideal gases by Gross et al. [5].

In the next section we describe the specific configuration and
thermal boundary conditions to be considered. We take the flow to be
sufficiently far from the near-critical regime so that Chien et al.'s [17]
Reynolds equation and its corresponding simplified temperature equa-
tion can be regarded as valid. Exact solutions to Chien et al.’s [17]
temperature equation are also presented in Section 2. In Section 3 we
present the approximate solutions for density, pressure, temperature
and heat flux valid for large speed numbers. In Section 4 we compare
these approximate solutions to numerical solutions of the Reynolds
equation and the corresponding temperature equation. The numerical
solutions are generated using realistic and explicit models for the
equation of state, viscosity, and thermal conductivity.

2. Formulation

We consider a two-dimensional flow in a thin gap corresponding to
the configuration sketched in Fig. 1. This representation is a reasonable
representation of a (two-dimensional) journal bearing if the clearance is
small.

The flow contained in the region ≤ ≤x L0 and ≤ ≤y h x0 ( ) is
taken to be steady, single-phase, compressible, and laminar. All phy-
sical variables are taken to have identical values at x= 0 and x= L.
The film thickness h(x) is any sufficiently smooth function that satisfies

= = =h h L dh
dx

dh
dx

L(0) ( ) and (0) ( ) 0.
(1)

A specific form of h(x) which corresponds to a two-dimensional
journal bearing having a thin gap is provided in Section 4. Axial flow is
not considered so that solutions are expected to be valid near the center
plane of a long bearing. The upper surface, i.e., =y h x( ), is at rest and

varies with the length scale L. The lower surface, i.e., =y 0, is trans-
lating with constant speed U in the positive x-direction. For con-
venience, we will refer to the upper and lower surfaces as the stator and
rotor surfaces, respectively. Thus, the no-slip and kinematic boundary
conditions require

= = =U at yv , v 0 0,x y (2)

= = =at y h xv v 0 ( ),x y (3)

where vx and vy represent the velocity components in the x and y di-
rections. Thermal boundary conditions include constant temperature
walls where we specify both upper and lower surfaces with fixed tem-
peratures. We will also consider boundary conditions corresponding to
an adiabatic wall at either =y h x( ) or at =y 0 with a fixed known
temperature at the non-adiabatic wall.

The Reynolds equation derived by Chien et al. [17] can be written in
non-dimensional form as
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(4)

where =x x L/ and =h h x h( )/ 0; here ≡ho h(0) and is the measure of the
thickness of the fluid film. We take values of quantities evaluated at

=x 0 as the constant reference values and denote these values by the
subscript “ref”. We denote the fluid density by ρ so that ≡ρ ρ ρ/ ref is the
scaled density. The bulk modulus of the fluid is

Nomenclature

β Thermal expansivity (K−1)
є Eccentricity ratio
κTe Effective bulk modulus (s−1)
κT Bulk modulus (Pa)
Λ Speed number
μ Shear viscosity (kg m−1s−1)
ρ Density (kg m−1)
c Radial clearance (m)
cp Specific heat at constant pressure (kJ kg−1K−1)
Ec Eckert number
h Film thickness (m)
k Thermal conductivity (W m−1K−1)

L Length scale in the main flow direction (m)
p Absolute pressure (Pa)
Pr Prandtl number
q Heat flux (W m−1)
rf Recovery factor
Re Reynolds number
T Temperature (K)
TR Temperature at the rotor (K)
TS Temperature at the stator (K)
U Speed of the rotor surface (m s−1)
u Non-dimensional x-component of velocity
V Specific volume (m3kg −1)
vx x-component of velocity (m s−1)
vy y-component of velocity (m s−1)

Fig. 1. Unwrapped configuration of a journal bearing. The y=0 axis corre-
sponds to the surface of the rotor and y= h(x) denotes the approximate posi-
tion of the stator. The value of x is the distance measured along the rotor surface
from the point of minimum film thickness. The quantity L denotes the cir-
cumference of the rotor and U denotes the constant speed of the surface of the
rotor. The fluid is contained in the space 0≤ y≤ h(x), 0≤ x≤ L. Only x and y
variations are considered and all velocity vectors will lie in the x-y plane.
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