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a b s t r a c t 

In many areas of suspension mechanics, such as filled polymer fluids or household products such as toothpaste, 
the suspending fluid itself is inherently non-Newtonian and may exhibit viscoelastic properties. In this paper, we 
extend the Stokesian Dynamics formalism to incorporate a simple model of viscoelasticity by using small spheres 
as ‘beads’ in a bead–spring dumbbell (such as is found in the derivation of Oldroyd and FENE constitutive models 
for dilute polymer solutions). Various different spring laws are then tested in both small-amplitude and large- 
amplitude oscillatory shear, and their rheological behaviour is compared to continuum constitutive models. 

1. Introduction 

Suspensions of particles in fluids can be found both in nature and 
as the basis of many products in industry. Blood, ceramics, paper pulp, 
paint and adhesives, to name just a few, can all be characterised as 
a background fluid in which small particles are distributed. A popular 
simulation technique for these suspensions is Stokesian Dynamics [1] : a 
microhydrodynamic, low Reynolds number approach to modelling sus- 
pensions which considers the interaction of particles with each other 
against a Newtonian background solvent. Typically it is chosen for its 
suitability for three-dimensional simulation with low calculation and 
time penalty. 

However, in many areas of suspension mechanics, the suspending 
background fluid itself is inherently non-Newtonian and may exhibit 
viscoelastic properties. A sensible step, then, is to extend the Stokesian 
Dynamics formalism to incorporate a simple model of viscoelasticity. As 
first seen in Binous and Phillips [2] , we do this by using small spheres 
as ‘beads’ in bead–spring dumbbells. 

Having done this, we observe the performance of these dumbbell 
suspensions in simulation by submitting them to oscillatory shear. Oscil- 
latory rheometry, both with small-amplitude shear and large-amplitude 
shear, has become a standard tool in the classification of viscoelastic flu- 
ids [3] . We can compare the measurements from the simulations under 
oscillatory shear with established constitutive models and experimental 
results from the literature to establish the validity of this extension of 
the Stokesian Dynamics method. 

Alternative simulation techniques for viscoelastic suspensions have 
been developed, using finite element [4] , finite volume [5] , and fic- 
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titious domain methods [6] , as well as methods which treat all sus- 
pended particles as passive, allowing the fluid flow to be computed 
separately [7] . These methods require meshing a (normally periodic) 
domain, which can place computational limits on the size of the do- 
main and the smallest particle size. Stokesian Dynamics does not re- 
quire meshing, and so can offer larger domains, a wider choice of par- 
ticle sizes, flexibility with geometry —walls can be created from fixed 
particles —and different imposed flows. 

In Section 2 of this paper, we summarise the theory of oscillatory 
rheometry and describe how we extend the Stokesian Dynamics formal- 
ism to incorporate the bead–spring dumbbell model of viscoelasticity. 
We then describe how we extract the rheological measurements from 

our simulations. In Section 3 , we compare the behaviour of different 
spring laws under small-amplitude oscillatory shear, while in Section 4 , 
we compare different models under large-amplitude oscillatory shear. In 
both of these sections, we investigate the effect of altering the parame- 
ters in the model, and compare their rheological behaviour to continuum 

constitutive models. 

2. Linear rheological measurements 

2.1. Theory 

Ideal rheometrical measurements are taken in simple shear, or vis- 
cometric, flow, 

𝒖 = ( ̇𝛾𝑦, 0 , 0) , �̇� = 

d 𝑢 
d 𝑦 

. (1) 
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Fig. 1. Oscillatory shear flow. 

Fig. 2. A linear and nonlinear stress response to an oscillatory shear over time. 
For SAOS, we expect the former, but for LAOS, we expect the latter. 

In a linear viscoelastic fluid, the stress response to this applied shear 
is dictated not just by the current rate of strain, but also by historical 
rate of strain, 

𝜎( 𝑡 ) = ∫
𝑡 

−∞
𝐺( 𝑡 − 𝑡 ′) ̇𝛾( 𝑡 ′) d 𝑡 ′. (2) 

The function G ( t ) is the relaxation modulus of the fluid, and represents 
the importance of the rate of strain from a time t ago on the current stress 
in the system. Determining the form of the relaxation modulus is the 
goal of linear rheology, as it allows for the classification of viscoelastic 
fluids. For example, a purely viscous fluid of viscosity 𝜂 has a relaxation 
modulus of 𝐺( 𝑡 ) = 𝜂𝛿( 𝑡 ) , where 𝛿( t ) is the Dirac delta function, and a 
linearly elastic solid has a constant relaxation modulus: 𝐺( 𝑡 ) = 𝐺 0 . 

The relaxation modulus of a fluid can be determined by applying 
oscillatory shear, where the shear, 𝛾, and shear rate, �̇� , are given by 

𝛾( 𝑡 ) = 𝛾0 sin ( 𝜔𝑡 ) , �̇�( 𝑡 ) = 𝛾0 𝜔 cos ( 𝜔𝑡 ) , (3) 

for an amplitude 𝛾0 and frequency 𝜔 . 
This can be realised in experiments by placing the fluid in a Couette 

cell and rotating the inner cylinder so as to impose a shear on the fluid. 
So long as the gap is narrow compared to the cylinder radii, and there 
are no instabilities or shear inhomogeneities, this is equivalent to simple 
shear flow ( Fig. 1 ). In practice the amplitude of the oscillation must be 
small enough so that the stress response of the fluid is also sinusoidal, i.e. 
the fluid must remain in its linear regime. At these amplitudes the stress 
is linear in the amplitude [3] . These tests are called small-amplitude 
oscillatory shear (SAOS). 

If the amplitude is increased, the stress response of a fluid may no 
longer be sinusoidal. For these large-amplitude oscillatory shear (LAOS) 
tests, a typical nonlinear response is demonstrated in Fig. 2 . Although 
the following definitions are only defined for small-amplitude oscilla- 
tory shear, their large-amplitude analogues provide useful rheological 
data [3] , as discussed in Section 4 . 

Imposing an oscillatory shear, Eq. (3) , if we stay in the linear regime 
the stress can be written as [8] 

𝜎( 𝑡 ) = 𝐺 

′𝛾( 𝑡 ) + 

𝐺 

′′

𝜔 

�̇�( 𝑡 ) , (4) 

where G ′ is the storage modulus and G ′′ the loss modulus. This form 

is powerful because it splits the viscous and elastic contributions: the 
storage modulus G ′ is associated with the total shear 𝛾, and thus repre- 

Fig. 3. A typical plot of G ′ and G ′′ for a viscoelastic fluid —here, the Oldroyd-B 
fluid we investigate in Section 3.2 —at different frequencies. The inverse of the 
frequency where the curves intersect, 𝜏, is described as the typical relaxation 
time of the fluid, and defines where the Deborah number, 𝐷𝑒 = 𝜔𝜏, is 1. 

sents elasticity. The loss modulus G ′′ is associated with the instantaneous 
shear rate �̇� , and thus represents viscosity. 

The two moduli G ′ and G ′′ are measured by rheologists as a function 
of frequency, 𝜔 , for a wide range of viscoelastic fluids. A typical example 
is shown in Fig. 3 . The inverse of the frequency where the two curves 
intersect, 𝜏 = 1∕ 𝜔 intersect , is described as the typical relaxation time of 
the fluid. This parameter allows us to nondimensionalise Eq. (3) [9] , 
writing the imposed shear as 

𝛾( 𝑡 ) = 

Wi 

De 
sin 

(
De 

𝑡 

𝜏

)
, (5) 

where the Deborah number, 𝐷𝑒 = 𝜏𝜔, is the ratio of the relaxation time 
to the oscillation period, and the Weissenberg number, 𝑊 𝑖 = 𝜏𝛾0 𝜔, is 
the ratio of viscous forces to elastic forces. However, since determining 
𝜏 requires us to have already determined G ′ and G ′′ , we choose not to 
nondimensionalise the equations in this way. 

2.2. System details for simulations 

In this paper we perform oscillatory simulations on a sample of New- 
tonian fluid with dumbbells suspended in it. We implement the dumb- 
bells in Stokesian Dynamics as pairs of small spheres (with radius 𝑎 = 1 
in our choice of units), a variable distance apart, with a force between 
the two. We place our dumbbells in a periodic box of side length 150 
units. The dumbbells are constrained to lie in a plane, 2 units deep, so 
that our simulations are carried out on a monolayer of particles. The 
method remains three-dimensional. 

To stop the dumbbells contracting to zero length in an otherwise 
quiescent flow, the dumbbells are given a natural length of 𝐿 = 20 , with 
which they are initialised. We later vary the number of dumbbells in 
the sample, but unless otherwise stated, we use an area concentration 
of 10%. The suspension undergoes eight shear periods, with the number 
of timesteps per period ranging from 80 to 1200, depending on the fre- 
quency and amplitude of shear; see discussion in Section 3.2 . The final 
shear period is used for our analysis; and we use the ensemble average 
of three independent solutions. 

The use of dumbbells in Stokesian Dynamics was first seen in Bi- 
nous and Phillips [2] , where a relationship was formulated between the 
dumbbells’ velocities and the forces exerted on them. In our implemen- 
tation for small-amplitude oscillatory shear, we go further by letting 
beads interact with each other through lubrication, allowing us to exam- 
ine concentrated suspensions. No non-hydrodynamic forces on the beads 
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