Accepted Manuscript

Rheological investigation of lunar highland and mare impact melt simulants

Aaron A. Morrison, Michael Zanetti, Christopher W. Hamilton, Einat Lev, Catherine D. Neish, Alan G. Whittington

PII: S0019-1035(17)30818-7

DOI: https://doi.org/10.1016/j.icarus.2018.08.001

Reference: YICAR 12976

To appear in: Icarus

Received date: 8 December 2017
Revised date: 11 June 2018
Accepted date: 1 August 2018

Please cite this article as: Aaron A. Morrison, Michael Zanetti, Christopher W. Hamilton, Einat Lev, Catherine D. Neish, Alan G. Whittington, Rheological investigation of lunar highland and mare impact melt simulants, *Icarus* (2018), doi: https://doi.org/10.1016/j.icarus.2018.08.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Morrison et al.: Rheology of lunar impact melt simulants

1

Highlights

- Measured viscosities of lunar impact melt analogs between 660-1600°C
- Anorthosite, norite and JSC-1a liquid have similar viscosity 0.5-2 Pas at 1600-2000°C
- Subliquidus results for mare basalt (JSC-1a) show low crystal fraction until ~1200°C
- Mare basalt impact melts should remain mobile to lower temperatures than highlands

Download English Version:

https://daneshyari.com/en/article/9953745

Download Persian Version:

https://daneshyari.com/article/9953745

<u>Daneshyari.com</u>