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a b s t r a c t

The problem of finding appropriate weights for combining several density forecasts is an
important issue that is currently being debated in the forecast combination literature. A
recent paper by Hall and Mitchell (2007) proposes that density forecasts be combined
using the weights obtained from solving an optimization problem. This paper documents
the properties of this optimization problem through a series of simulation experiments.
When the number of forecasting periods is relatively small, the optimization problem often
produces solutions that are dominated by a number of simple alternatives.
Crown Copyright© 2015 Published by Elsevier B.V. on behalf of International Institute of

Forecasters. All rights reserved.

1. Introduction

The question of finding weights for combining density
forecasts is non-trivial, and is currently being debated in
the forecast combination literature. The latest work in this
area is by Kapetanios, Mitchell, Price, and Fawcett (2015),
and examples of early contributions are provided by Tay
and Wallis (2000)and Corradi and Swanson (2006). The
reader is also invited to peruse the review by Timmermann
(2006) for a thorough review of the forecast combination
literature.

In a recent paper, Hall and Mitchell (2007) propose a
practical way of obtaining weights in a linear combination
of density forecasts. The weights are found by maximizing
the average logarithmic score of the combined density
forecast. Hall and Mitchell (2007) call these weights
‘‘optimal’’ because they minimize the ‘‘distance’’ between
the forecast and true (but unknown) densities, asmeasured
by the Kullback–Leibler Information Criterion (KLIC).
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AlthoughHall andMitchell (2007) showhow theseweights
can be used, the paper does not detail the theoretical
properties of the estimators of theweights. Themotivation
for the study relies on asymptotic theory, namely that the
number of time periods grows to infinity (T → ∞).
Geweke and Amisano (2011) propose an approach that is
similar to that of Hall and Mitchell (2007) using Bayesian
methods, and provide a theoretical justification for the use
of optimal linear combinations.

Several studies have followed in the footsteps of Hall
and Mitchell (2007) in developing weighting techniques
for density forecasts. For example, Jore, Mitchell, and
Vahey (2010) develop log-score recursive weights for
autoregressive models of output growth, inflation and
interest rates. Similarly, Garratt, Mitchell, Vahey, and
Wakerly (2011) apply these recursive weights to density
forecasts of inflation in various industrialized countries.
Bache, Jore, Mitchell, and Vahey (2011) employ weighting
techniques similar to those of Hall and Mitchell (2007)
for combining inflation forecast densities in linear opinion
pools.

Onewould assume that the combination of various den-
sity forecasts implies that several density forecasts would
be assigned positive weights in the combination. However,
this paper finds that the ‘‘optimal weights’’ of Hall and
Mitchell (2007) can behave unexpectedly when the num-
ber of forecasting periods is small. The weights can be such

http://dx.doi.org/10.1016/j.ijforecast.2015.09.002
0169-2070/Crown Copyright© 2015 Published by Elsevier B.V. on behalf of International Institute of Forecasters. All rights reserved.

http://dx.doi.org/10.1016/j.ijforecast.2015.09.002
http://www.elsevier.com/locate/ijforecast
http://www.elsevier.com/locate/ijforecast
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijforecast.2015.09.002&domain=pdf
mailto:laurent.pauwels@sydney.edu.au
mailto:andrey.vasnev@sydney.edu.au
http://dx.doi.org/10.1016/j.ijforecast.2015.09.002


392 L.L. Pauwels, A.L. Vasnev / International Journal of Forecasting 32 (2016) 391–397

that only one density is selected (‘‘corner solution’’), rather
than combining the densities (‘‘mixing solution’’). Empiri-
cal work often provides evidence that combining densities
is a better strategy than selecting one model. Kascha and
Ravazzolo (2012) show that, although combinations do not
always outperform individual models, they are beneficial
because they are more accurate overall, and provide insur-
ance against inappropriate model selection. Pauwels and
Vasnev (2012) find that, when predicting the Fed’s deci-
sions to change the interest rate, the optimal weights of
Hall and Mitchell (2007) select only one model for 41 fore-
casting periods. After 41 periods, each of the models is al-
located a positive weight. While this result could be an
artefact of the specific empirical study, it nonetheless begs
for a formal investigation.

This paper examines the properties of Hall andMitchell
(2007) optimal weights when the number of forecasting
periods is not infinite. Simple simulations provide clear
insights; it turns out that ‘‘corner solutions’’ do occur
frequently, but disappear as the number of forecasting
periods increases (T → ∞). The paper is organized
as follows. An empirical illustration that motivates the
questions raised in this paper is presented in Section 2.
Section 3 provides simulation results to support the
argument made in the paper. Section 4 concludes.

2. Empirical illustration: Predicting FOMC monetary
policy decisions

The following empirical illustration discusses proba-
bility density forecast combinations, including the com-
bination using the optimal weights proposed by Hall and
Mitchell (2007). Early attempts toworkwith combinations
of probability forecasts have been made in the context of
aggregating probability distributions of expert opinions, as
was discussed by Genest and Zidek (1986) and Clemen and
Winkler (1999).

Pauwels and Vasnev (2012) use a conditional ordered
probit model to estimate the dynamics of the federal
funds target rate changes, following in the steps of Dueker
(1999), Hamilton and Jordà (2002), Monokroussos (2011),
Hu and Phillips (2004a), Kim, Jackson, and Saba (2009) and
Kauppi (2012). Dueker (1999) uses the model

r∗

t = x′

t−1β − ut (1)

y∗

t = r∗

t − rt−1, (2)

where ut ∼ N(0, σ 2), both y∗
t and r∗

t are unobservable,
and xt−1 contains observable information that is relevant
to the forecast, including initial claims for unemployment
insurance, annual growth ofM2, consumer confidence, and
annual growth of manufacturers’ new orders.

In Eq. (2), r∗
t is the optimal policy rate, which is assumed

to exist. rt is the federal funds target rate set by the Federal
Open Market Committee (FOMC) at its last meeting. Only
the FOMCmeeting months are forecasted. The time period
used in this example is from January 1994 to April 2010,
which represents 133 FOMC meetings.1

1 Pauwels and Vasnev (2012) present various robustness checks,
including forecasting up to December 2008, which was the last month in
which the Fed used the basis point target, before switching to the interval
target.

The Fed’s decisions about the target interest rate are
classified into three categories: ‘‘cut’’, ‘‘no change’’ and
‘‘hike’’. Hence,

yt =


−1 if y∗

t < µ1
0 if µ1 ≤ y∗

t ≤ µ2
1 if y∗

t > µ2,
(3)

is the observed decision of the Fed. For example, if the
difference between the optimal policy rate (r∗

t ) and the
actual federal funds target rate (rt−1) is greater than the
threshold µ2, then the model would predict a rate hike
(yt = 1).2

In the discrete choice model with the error distribution
Φ , the probability distribution of yt , Pr(yt = j), depends
on (xt; θ)with the parameter vector θ = (β′, µ1, µ2, σ

2)′.
For simplicity, it is denoted Pj,t(xt; θ). The parameters
are estimated by maximizing the log-likelihood for the
multiple-choice model.

Model combination is performed as follows. At each
time t , each model i ∈ {1, . . . ,N} produces a probability
forecast P (i)j,t (x

(i)
t ; θ(i)) for each state j = −1, 0, 1. The

vector of covariates x(i)t and the parameter vector θ(i) can be
different for each model. Hence, the combined one-step-
ahead probability forecast, P̂ (c)t , simply follows from

P̂ (c)t =

N
i=1

wiP̂
(i)
t (x

(i)
t ; θ̂

(i)
),

where P̂ (i)t =


P̂ (i)

−1,t , P̂
(i)
0,t , P̂

(i)
1,t

′

is a 3 × 1 vector of

estimated probabilities, θ̂
(i)

is the estimated parameter
vector of θ(i), and wi is a scalar that weights model i. The
weights wi are non-negative and sum to one. Note that
the notation wi is used for simplicity, as the weights can
change over time.

Among other methods, the weights wi can be con-
structed using the weights proposed by Hall and Mitchell
(2007). We denote those weights asw∗

i and call them opti-
mal, following the terminology of Hall andMitchell (2007),
but introduce them formally in the next section. Alter-
natively, the weights can be constructed by ranking the
scores of themodels’ forecasting performances, aswas pro-
posed by Pauwels and Vasnev (2012). If the log score is
used to evaluate the performance, then the weights are

wPV
i =

1/|S̄ li |
N
i=1

1/|S̄ li |
i = 1, . . . ,N, (4)

where the log scores S̄ li are averaged over all one-
step-ahead forecasts.3Hence, the better the score for a

2 When the vector xt contains integrated processes, the thresholds can
be scaled by the sample size, as was shown by Hu and Phillips (2004a,b)
and applied by Pauwels and Vasnev (2012).
3 If state j happens, then the log-score is given by S l = log(P̂j), similarly

to the study by Ng, Forbes, Martin, and McCabe (2013). For multiple
one-step-ahead forecasts, the logarithmic scores are averaged over the
number of forecasted periods for each model i.
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