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a b s t r a c t

Purpose: Evaluate the sensitivity of Gunshot Detection Technology (GDT) relative to Calls for Service.
Existing crime data sources have biases that do not present a complete picture of gun-related crime. GDT
may offer a new metric for firearm crimes. However, few studies have assessed the accuracy of GDT and
its relationship to other measures of violence.
Methods: GDT and gun crime-related Calls for Service in Washington, DC during 2010 were studied.
Using temporal comparisons for month, day of year, weekday, and hour of the day, spatial comparisons
on a quarter-mile square grid, and a Poisson-Lognormal-CAR spatial regression model on a combined
grid by time period dataset, we examined the sensitivity of GDT activations relative to gunshot-related
calls for service.
Results: The results showed that relative GDT sensitivity changed by time and by space. In particular, the
relative sensitivity of GDT was much stronger in the evening and at nighttime than in the daytime. In
terms of spatial variation, we found that GDT sensitivity decreased with distance from the nearest zone
centroid. In addition, there were two small geographic areas in the study area in which the relative GDT
sensitivity was lower than expected.
Conclusions: GDT systems identify the frequency and locational accuracy of gunshot incidents, particu-
larly at nighttime. This technology has the potential to improve data collection on gun use and violence
and produce more accurate representations if the temporal and distance limitations of the technology
are understood. GDT may improve gun detection and, thereby, improve police operations and public
support for police.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

This study examines the relationship between Gunshot Detec-
tion Technology (GDT) and calls for service relating to firearms
discharges. Researchers have long known that information in
available statistical measures of crime reveal only a portion of total
offenses, with another portion, sometimes referred to as “the dark
figure of crime,” going unrepresented (Coleman&Moynihan, 1996;
Penney, 2014). GDT offers the possibility of identifying some of that
unrepresented crime related to firearms use. However, few studies
have assessed the accuracy of GDT and its relationship to other
measures of violence.
-Erickson).
1.1. Under-reporting of gun violence

Reporting bias, either due to individuals' reluctance to disclose
information or failure to recall past crime incidents poses a
particularly significant threat to research on gun violence. Public
reports (Calls for Service) have been the primary means by which
police become aware of gunshots (Mazerolle, Watkins, Rogan, &
Frank, 1999). However, gun violence in communities tends to be
concentrated within small geographic areas and affect a limited
network of people (mostly young males), many of whom have been
both victims and perpetrators of illegal gun activity (Braga, 2003;
2007) and who may be socially unconnected and disinclined to
report incidents (Fox, 1996; Jones- Brown, 2007; Solis, Portillos, &
Brunson, 2009). Lack of reporting may also occur where gunshots
are commonplace and perceptions of police response and effec-
tiveness are low (Kidd& Chayet, 1984; Langton, Berzofsky, Krebs,&
McDonald, 2012; Mazerolle, Frank, Rogan, & Watkins, 1999) or
when there are non-fatal firearm-related crimes such as gun
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1 All three subsets produced virtually identical results on all temporal and spatial
tests.
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discharges with no victim or gun assaults with minor wounds
(Mazerolle, Frank et al., 1999).

To overcome reporting bias researchers generally focus on
firearm-related homicides. However, most gunshot-related crime
incidents do not result in a homicide (Alavarado & Massey, 2010;
Archer & Gartner, 1984; La Free, 2005). These limitations of tradi-
tional data on gun violence underscore the need for additional
information on gun-related crimes that can provide a more accu-
rate identification.

1.2. Gunshot Detection Technology

Data from GDT offer a new source of information on firearm-
related crimes. GDT uses a network of acoustic sensors to identify
the sound of a gunshot and relay this information to emergency
services personnel (Eng, 2004; Showen, 1997; Siuru, 2007).
Beginning in the 1990s increasing numbers of law enforcement
agencies began adopting GDT to facilitate improved response to
gun violence and by 2014, a total of fifty cities and 267 square miles
were covered by just one GDT vendor's system (SST Inc., 2014).

The technology uses the sensors to identify a gunshot sound and
triangulate its position (see Fig. 1). Gunshots have a distinctive
acoustic signature composed of the sound of the explosion, the
muzzle blast, the sound of the firearm's projectiles and, to lesser
degree, the mechanical sound of the firearm and vibration from any
solid surfaces near the discharge of the weapon (Maher, 2007). A
byproduct of the detection process is standardized data recording
of the location and time of gunshot with considerable precision.
Themost recent versions of this technology have also been found to
accurately record gunshots under most conditions (Goode, 2012).

1.3. Evaluation of the accuracy of GDT systems

Findings on the accuracy of GDT systems for detecting and
triangulating gunshots are mixed but do suggest that it has
improved over time. Early deployments detected approximately 81
percent of gunshots fired with the technology being able to trian-
gulate the location of the gunshot in 84 percent of those cases
(Mazerolle, Watkins et al., 1999; Watkins, Mazerolle, Rogan, &
Frank, 2002). However, a two-city assessment yielded sharply
divergent results with a 97 percent success rate identifying gunshot
at one of the cities and a failure to identify shots of more than 70
percent at the other (Litch & Orrison, 2011). Another study found
that the correlation between activations and reported calls for
service differed substantially within Oakland, CA and Washington,
DC (Carr & Doleac, 2015a, 2015b). That study found only 12% of the
gunshots detected by the GDT system resulted in 911 calls to report
gunshots.

2. Methodology

Our study focuses on concentrations of detected gunshots and
Calls for Service inWashington, DC. In 2010, the city had 17.3 square
miles of GDT coverage which represented about 25% of the total
area of the city. The GDT installations were placed in areas with
high amounts of citizen-reported gunshots and gun-related crimes.
The city also has ample crime data of sufficient quality, collected by
the Washington DC Metropolitan Police Department (MPD).

In 2010, Washington, DC had approximately 1241 violent crimes
per 100,000 persons, putting its violent crime rate (819 violent
crimes per 100,000 persons) substantially above the national
average for cities with populations between 500,000 and 999,999.
According to official records, in 2010 in the city, 76 percent of ho-
micides, 19 percent of aggravated assaults, and 40 percent of rob-
beries were committed with firearms (FBI, 2011).
2.1. Data sources

The biggest methodological problem in evaluating GDT is that
there is not a complete database of gunshot events. Based on the
data we have, actual gun-related crimes appear to be fewer than
10% of all gunshot events. Consequently, it was necessary to
approximate the number of gunshot events by comparing the GDT
detection with Calls for Service for gun-related events.

Three different sources of data were used for this study: 1) Ac-
tivations of the Metropolitan Police Department (MPD)’s GDT sys-
tem; 2) Gun-related calls for police service reported to the MPD in
2010 (hereinafter referred to as Calls for Service), and 3) Gun-
related crimes reported to the MPD in 2010. These data sources
were only collected for the GDT coverage areas. The GDT data was
obtained from ShotSpotter, the largest GDT manufacturer (SST,
2016), which divided its coverage within the city into four zones.
To ensure better accuracy, a buffer zone of 0.25 miles beyond the
boundaries was added for the identification of gunshot incidents.

The data were obtained by accessing a data file made publically
available online by the MPD in response to a Freedom of Informa-
tion request. The data provide the geographic coordinates of the
detected gunshot event (within 25 m), the date and time, file of the
gunshot, and an indicator of whether the incident involved single
or multiple shots. These data provided an initial total of 5745
detected incidents in 2010. Eliminating GDT counts outside the
coverage area (the coverage area plus a quarter mile buffer zone
beyond) reduced the number to 5437. Calls for Service data were
obtained from the MPD. In 2010, there were 6855 Calls for Service
related to gunshot incidents within Washington DC. Of these, 6072
(or 89%) occurred within the study area. However, for many gun-
shot events, there were multiple calls received.

To identify unique calls, that is unique gun events for which one
or more calls were received, we selected three time windows of 10
(N ¼ 4251), 20 (N ¼ 3592), and 30 min (N ¼ 1708) and only iden-
tified the first call within each window. The aim was to identify a
unique set of gunshot events based on one or more persons calling
the police for a gunshot sound. When we made comparisons by
month, day of year, day of week, hour of day, and spatial variability,
the three sub-sets correlated highly with each other.

We chose the 20 min window (N ¼ 3592) as representing a
reliable estimate of the number of unique gun events identified by
the public.1 We chose the 20 min window for three reasons. First,
considering the number of unique events in 10, 20, and 30 min
windows, we decided that a 20 min window was a good break
point. The number of GDT events identified was 5,437, which is
more frequent than the calls received in any of those windows. The
longer the time window, the greater the ratio since the number of
unique events identified decreases. Clearly, without having an in-
dependent dataset of actual gun shots, we cannot easily test which
window is the most accurate.

Second, we did not want to bias the results by either over-
estimating or underestimating. Having a higher overall ratio makes
GDTappear more accurate than it is; the conversewould be true for
a 10 min window where the ratio was lower (i.e., we would get
more hours where the ratio fell below 1.0).

Third, there is a potential ‘false negative’ problem in taking a
longer window. If two separate gun events came within 30 min of
each other, then the 30 min window would categorize them as a
single event, rather than two. On the other hand, using a 10 min
windowmight create ‘false positive’, identifying two ‘events’which
actually was only one. Thus, the 20 min window is a good balance



Fig. 1. How the Gunshot Detection Technology works.
Source: Urban Institute.
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between the two ‘false’ conditions.
Crime incident data was limited to gun-involved assaults

(N ¼ 396) and gun homicides (N ¼ 60) for the types of crimes most
likely to be captured by the GDT system. While robberies are
another category of crimes for which a firearmmight be used, these
were excluded due a lower likelihood of firearm discharge (around
40%; see Cook, Ludwig, Venkatesh, & Braga, 2007; Hales, Lewis, &
Silverstone, 2006). Unfortunately, a time stamp for this data set
was not available to us. Consequently, we could not use it to match
GDT and calls for service but, instead, used it as an indicator of the
overall spatial distribution of gun events in the space-time model
discussed below.
2.2. Dimensions of evaluation

2.2.1. GDT-to-Calls Ratio
In the public health andmedical fields, and increasingly in other

fields, the concepts of sensitivity and specificity of a method are
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used to evaluate it (Emory University, 2016). The sensitivity of a test
is the proportion of ‘true positives’ that are correctly identified
while the specificity of a test is the proportion of ‘true negatives’
that are correctly identified. The problemwith using these concepts
is that an independent database of events is needed to evaluate
each measure which, unfortunately, we do not have.

Consequently, we used a comparative index of sensitivity,
namely the ratio of GDT-to-Calls. This is an indicator of Relative
GDT sensitivity, that is, the ratio of GDT detection relative to gun-
related Calls for Service. If GDT is an accurate technology, then it
should identify all gun events that humans identify and call into the
police. In addition, it should identify gun events for which there are
no calls to the police. Therefore, the ratio of GDT-to-Calls should be
equal to or greater than 1.0. Overall, the ratio of total GDT events to
Calls varied by the time window. For the 10-min window, the ratio
was 1.28. For the 20-min window (our default choice), it was 1.52
and for the 30-min window it was 3.18.2

2.2.2. Temporal and spatial comparisons
A temporal comparison of the GDT-to-Calls ratio was conducted

by month, day of the year, weekday, and hour of the day. In addi-
tion, six 4-h time periods were used to group both the GDT and
Calls for Service data.

For spatial analysis, both the GDT and Calls for Service datawere
assigned to 628 grid cells, one quarter mile on a side that covered
the coverage area. An additional space-time data base was created
by assigning the GDT and calls to grid cells subdivided by the six
time periods. That is, for each of six 4-h time periods, the data were
assigned to the 628 grid cells yielding a space-time dataset of 3768
grid cells (i.e., 628 grid cells x 6 time periods). Fig. 2 below shows
the Washington DC boundary, the four Shotspotter coverage areas,
the 1320 foot buffer around those coverage areas, the 628 grid cells,
and the centroids of the grid cell.

2.2.3. Distance from the nearest zone
Because the location of the GDT sensors is proprietary to the

vendor, we do not know precisely where they are located. As a
rough approximation, we took the centroid of each of the four
coverage zones on the assumption that the sensors were placed
symmetrically within the zone. We then calculated the distance
from each of the 628 grid cells to the nearest zone centroid as a
proxy for nearness to the acoustical sensors.

2.3. Statistical modeling

To test a simple relationship between GDT and Calls for Service
by the time categories, two statistical tests were used: 1) a Pearson
‘r’ correlation coefficient between the two data series (Kanji, 2006);
and 2) a Kolmogorov-Smirnov two-sample test to indicate whether
the two samples came from the same distribution (Kanji, 2006).
The Pearson ‘r’ indicates the overall degree of similarity in the
pattern of GDT and Calls for Service; it is a parametric test based on
the assumption that the two series are approximately normally
distributed. The Kolmogorov-Smirnov test is a non-parametric test
that looks for the maximum difference in the cumulative pro-
portions of each data series and compares this to a theoretical
distribution about likely variation in that maximum difference if
the two series were from the same underlying distribution.
2 A second dimension for evaluation would be the locational accuracy of GDT
relative to Calls for Service. However, it is well known that calls are not particularly
locationally accurate for gunshots unless the caller is very close to the incident
location. Consequently, we did not attempt to evaluate the relative spatial accuracy
of GDT.
For space-time modeling, we tested whether the GDT-to-Calls
ratio changed according to time of day and distance from the
centroid of the nearest coverage zone. For this test, a Poisson-
Lognormal-CAR risk model was used (Levine et al., 2013). Because
each of the two data series is a count that is highly skewed in space,
the number of GDT events detected relative to the number of Calls
for Service is assumed to be Poisson distributed and independent
over all segments, and has the form:

yijli � Poisson ðliÞ (1)

In turn, the mean of the Poisson, li, is modeled as:

mi ¼ nili (2)

where ni is an exposure measure and li is the rate (or risk). The
exposure variable is the baseline variable to which the number of
events is related (Besag, Green, Higdon, &Mengersen, 1995), in our
case the number of Calls for Service for each grid cell-time period.
The rate is further structured as a Poisson- Lognormal model:

mi ¼ nili ¼ niexp
�
xKi bþ 4i þ εi

�
(3)

where exp is the base of the natural logarithm (an exponential
function), b is a vector of unknown coefficients for the K covariates
plus an intercept, fi is a spatial random effect which is estimated
using a Conditional Autoregressive (CAR) function (Besag, 1974),
and εi is the model (residual) error independent of all covariates.
The error term, εi, is assumed to follow a lognormal distribution
with a mean equal to 0 and a variance equal to
s�2
ε

¼ tε � Gamma ðaε; bεÞ: Note that there is no coefficient for
the risk (exposure) variable, ni (i.e., it is 1.0). Because of this, it is
sometimes called an offset variable (or exposure offset).

Normally with a count dependent variable, a negative binomial
regression model is used. In that model, the mean is assumed to be
Poisson-distributed while the dispersion is assumed to be Gamma
distributed (Cameron & Trivedi, 1998). However, when there is a
low sample mean, as with these data, the negative binomial func-
tion is unreliable (Ma, Kockelman, & Damien, 2008; Park & Lord,
2007). With these data, we have 5437 GDT detections and 3592
calls for service which are then assigned to 3768 grid cells, an
average of 1.44 and 0.95 per cell respectively. The Poisson-Gamma
model typically becomes reliable when the sample mean exceeds 3
or 4 (Park & Lord, 2007).

The models were estimated with a Markov Chain Monte Carlo
(MCMC) algorithm using the CrimeStat IV statistical program (Lord,
Levine, Park et al., 2013). The MCMC method (sometimes called
Bayesian Hierarchical Modeling; Gelman, Carlin, Stern, & Rubin,
2004) is used with complex functions where maximum likeli-
hood estimation does not work. To produce reliable estimates of
the parameters, each model was run with 100,000 samples with
the first 50,000 samples being discarded (called ‘Burn in’). More
information on the method can be found in Lynch (2007) and
Gelman et al. (2004). The coefficients were tested with approxi-
mate t-values and 95% credible intervals.

The overall fit of a model was measured through several sta-
tistics: 1) The log-likelihood (smaller negative value is better); 2)
The Aikaike Information Criteiron (AIC) and the Bayesian Infor-
mation Criterion (BIC) which control for degrees of freedom
(smaller positive value is better for both statistics); 3) The Mean
Absolute Deviation and Mean Squared Predicted Error which test
for goodness of fit (smaller is better for both statistics); and 4) The
dispersion multiplier which indicates how much the mixed func-
tion model differs from a pure Poisson model since skewness in
spatial distributions of crime events are more skewed than



Fig. 2. Shotspotter coverage and grid cells used in analysis.
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expected by a Poisson distribution. See Lord, Levine, & Park (2013)
for a discussion of these measures.

The effects of the independent variables were measured
through coefficients and their statistical significance was tested
with an approximate t-test as well as by 95% credible intervals
(Lord, Levine, Park et al., 2013). The models are presented in linear
form with the log of the dependent variable (GDT) being a linear
function of the log of the exposure variable (Calls) plus the inde-
pendent variables with coefficients.

We also ran Poisson-Gamma-CAR models for comparison but
found the Poisson-Lognormal-CAR to be better both in terms of
model fit as well as producing more realistic predictions.3 In
addition, separate models were run for each time period using the
above Poisson-Lognormal-Car formulation.

3. Results

3.1. Temporal comparison

Temporal comparisons were made by month, day of year,
weekday, and hour of the day. For month, both the GDT identifi-
cation and Calls for Service tended to be higher in the summer than
at other times with the exception of January where both indices
peaked. However, the GDT-to-Calls ratio varied by month from a
high of 2.41 in January to a low of 1.12 in August. The Pearson ‘r’
correlation between the two series was moderately high, 0.69, and
was statistically significant (t ¼ 3.87; p � 0.01). However, the
Komolgorov-Smirnov two-sample test was also statistically signif-
icant at the p � 0.001 level (Dmax ¼ 0.050; Critical D.001 ¼ 0.042)
indicating that the two series cannot be considered as coming from
the same distribution. That is, the GDT-to-Calls ratio is not constant
and varies by month.

For day of the year comparisons, the GDT-to-Calls ratio averaged
1.41 per day. However, it varied from a low of 0 (2 days; March 14th
and December 14th) to a high of 15.27 (January 1st). In fact, the
3 The Poisson-Gamma-CAR models produced much too large predictions.
number of gun events on January 1st was almost three times more
frequent than the next highest day (June 26th). The top 20 days of
2010 in terms of frequency of GDT activations were examined and
the ratio averaged 4.29 with a median of 2.62. Even excluding
January 1st, the average for the next highest 19 days was 3.52. Thus,
on days with many GDT detections, the ratio of GDT detected
events to Calls for Service was substantially higher than the average
for the year.

Over all 365 days, the Pearson ‘r’ correlation between GDT and
Calls for Service was 0.48 and statistically significant (t ¼ 12.71;
p � 0.001). The Komolgorov-Smirnov two-sample test was also
significant at the p � 0.001 level (Dmax ¼ 0.075; Critical
D.001 ¼ 0.042). Therefore, even though there was a moderate cor-
relation between the two series, they have to be considered as
coming from different underlying distributions (i.e., the GDT-to-
Calls ratio is not constant throughout the year).

For weekday comparisons, both the GDT detections and the calls
were higher on the weekends than on the weekdays (see Fig. 3
below). The GDT-to-Calls ratio varied from a low of 1.18 (Wednes-
days) to a high of 2.16 (Fridays). The weekend days (Friday, Satur-
day, Sunday) had a higher average (1.78) than weekdays (1.25). The
Pearson ‘r’ correlation between GDT and Calls over the seven days
was 0.83 and statistically significant (t ¼ 4.54; p � 0.01). The
Komolgorov-Smirnov two-sample test was also statistically signif-
icant at the p � 0.001 level (Dmax ¼ 0.089; Critical D.001 ¼ 0.042)
and, thereby, indicates that the two series were from different
underlying distributions.

For hour of the day, both GDT and the calls for service were
higher in the evening and the early morning hours than at other
hours (see Fig. 4 below). However, the ratio of GDT-to-Calls also
followed this pattern, varying from a high of 1.85 between
Midnight and 1:00 a.m. to a low of 0.58 between 6:00 a.m. and 6:59
a.m. (see Fig. 5). For the nighttime hours, the ratio indicates that the
GDT technology is particularly sensitive, having a ratio that is at
least 1.5 times that of the calls for service. But, during the daytime
(from around 5:00 a.m. through 5:59 p.m.), the ratio was not
different than parity (1.0) and for six individual hours actually fell
below 1.0.



Fig. 3. Weekday comparison of GDT detection and calls for service.

Fig. 4. GDT detection and calls for service by hour of the day.
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The Pearson ‘r’ correlation between the two series for hour of
the day was 0.98, highly significant (t¼ 30.81, p� 0.001). However,
again, the Komolgorov-Smirnov two-sample test was also signifi-
cant at the p� 0.001 level (Dmax¼ 0.075; Critical D.001¼0.042) and,
thereby, indicated that the two series were from different under-
lying distributions.

In summary, GDT detection and the Calls for Service using the
20-min window showed parallel patterns. But, in each case, the
Komolgorov-Smirnov test indicated that they were not from the
same underlying distributions with the subsequent GDT-to-Calls
ratio varying by time.
3.2. Spatial comparison

Both GDT detections and Calls for Service (20-min window)
were assigned to 628 grid cells, one quarter mile on a side. The
overall pattern of the two distributions was similar with more
events being identified in the center of the coverage zones for both



Fig. 5. Ratio of GDT detection to calls for service.
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indices (see Fig. 6 for GDTevents and Fig. 7 for Calls for Service). The
Pearson ‘r’ correlation was 0.84 between the two distributions and
was highly significant (t ¼ 51.85; p � 0.001). Further, the
Komolgorov-Smirnov two-sample test was not significantly
different for the two distributions over all 628 grid cells
(Dmax ¼ 0.026; Critical D.05 ¼ 0.029). Therefore, the overall spatial
pattern was similar between GDT and Calls for Service and can be
considered as having the same underlying distributions, unlike the
temporal patterns.

However, the GDT-to-Calls ratio varied considerably within the
Fig. 6. GDT Gunshot Identificati
study area, also being higher where there was a concentration of
GDT and Calls (see Fig. 8). We suspect that this was due to more
acoustical sensors being located near to these concentrations. But,
since we do not know the sensor locations, we cannot test that
hypothesis.

3.3. Space-time comparison

As was shown above, the temporal patterns in the GDT-to-Calls
ratio varied and this affected the spatial patterning, too. When we
on by 0.25 mile Grid Cells.



Fig. 7. Calls for Service Identification by 0.25 mile Grid Cells.

Fig. 8. Ratio of GDT gunshot identification to calls for service.
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examined the space-time data set that combined GDT and Calls for
Service by six 4-h time periods, we found substantial variations that
indicated the GDT-to-Calls ratiowas not constant in space and time.
The Pearson ‘r’ correlation coefficient over the 3728 cells was 0.72
and was statistically significant (t ¼ 93.97; p � 0.001). But, the
Pearson ‘r’ correlation was lower for the space-time data set than
for the grid cells for all time periods. Further, unlike the grid cells
for all time periods, the Komolgorov-Smirnov two-sample test was
statistically significant for the two distributions over all 3768 grid
cells (Dmax ¼ 0.084; Critical D.05 ¼ 0.044). In other words, the
spatial pattern of GDT and Calls for Service were not from the same
distribution but varied by time period.



Table 1
Variables used in space-time model.

Dependent variable: GDT-to-Calls Ratio by Time Period by Grid Cell
Independent variables: Time Period (dummy variables)

Midnight e 3:59 a.m.
8:00 a.m.e11:59 a.m.
Noon e 3:59 p.m.
4:00 p.m.e7:59 p.m.
8:00 p.m.e11:59 p.m.

Distance From the Nearest Zone Centroid (miles)
Number of Gun-related Homicides and Assaults
Border Zone (dummy variable)

Table 2
Space-time Models of GDT Sensitivity. Poisson-Gamma-CAR Models for GDT-to-
Calls Ratio as a Function of Time and Spatial Location (N ¼ 3768 space-time grid
cells).

Dep. Var: Log of GDT
Model 1: Model 2: Model 3:

N: 3768 3768 3768
Df: 3759 3761 3759
No. of samples: 100,000 100,000 100,000
‘Burn in’ samples: 50,000 50,000 50,000
Log likelihood: �7568.85 �7578.09 �7569.82
AIC: 15,155.70 15,170.19 15,157.64
BIC: 15,211.81 15,213.83 15,213.75
Mean Absolute Deviation: 1.56 1.55 1.54
Mean-squared Error: 16.75 16.62 16.50
Dispersion multiplier: 10.20***. 10.26*** 10.26***

Modeled Parameters Coefficient Coefficient Coefficient

Exposure variable
calls for service: 1.0000 1.0000 1.0000
Independent variables
Intercept: 0.4788n.s 0.8012*** 0.9440***

Midnight e 3:59 a.m.: 1.1740*** 0.8601*** 0.8443***

8:00 a.m. e 11:59 a.m.: 0.6434* e e

Noon e 3:59 a.m.: �0.1702n.s. �0.5122* �0.4989*

4:00 p.m. e 7:59 p.m.: 0.3754n.s. e e

8:00 p.m. e 11:59 p.m.: 1.1077*** 0.7903*** 0.7783***

Distance from nearest
zone centroid:

�0.3764** �0.3844** �0.3752**

Number of gun-related
homicides/assaults:

e e �0.0900n.s.

Border zone: e e �0.2419n.s.

Spatial Autocorrelation
CAR (Average 4) 0.0000n.s. 0.0000n.s. �0.0000n.s

n.s. Not significant.
*p � 0.05.
**p � 0.01.
***p � 0.001.

Y. Irvin-Erickson et al. / Applied Geography 86 (2017) 262e273270
3.3.1. Space-time modeling
To understand variation in spatial pattern by time, we modeled

the GDT-to-Calls ratio over the space-time grid cells using a
Poisson-Lognormal-CAR model. To measure time, five dummy
variables were created corresponding to five of the six 4-h time
periods. To avoid over-fitting the model, the time period of 4:00
a.m.e7:59 a.m. was excluded from the model. To measure spatial
location, the distance of each grid cell from the nearest zone
centroid was used.

Space and time are the primary independent variables. How-
ever, to control for possible distorting influences, two other vari-
ables were examined: 1) The number of gun-related crimes
(homicides and assaults) that were reported in 2010; and 2)
whether the grid cell was on the border of the four coverage zones.
The gun-related homicides and assaults might be expected to
correlate with both the number of GDT detections and Calls for
Service. However, it would not necessarily correlate with the GDT-
to-Calls ratio. Therefore, it can be considered as a potential
adjustment factor' in improving the space-time model. The border
grid cell might also have an effect on the GDT-to-Calls Ratio since
we added a quarter mile buffer zone to the coverage areas. Table 1
summarizes the variables used in the model.

Three models were tested. In the first, we included the five time
periods and the distance variable. In the secondmodel, we included
only variables that were statistically significant. In the third model,
we added the ancillary variables of number of gun-related homi-
cides and assaults and the border zone variable. Table 2 presents
the results for the three models. The estimated coefficients are
shown along with the model log-likelihood, AIC, BIC, mean abso-
lute deviation, mean squared predictive error, and dispersion
multiplier statistics. The value of the CAR (spatial autocorrelation)
component shown, 4, was an average over all 3768 grid cells. The
actual CAR value that was output is observation-specific, 4i, and
was a local adjustment to the predicted value (not shown). In all
three models, the coefficient for Calls for Service was 1.0 since this
was a risk/exposure type model within a Poisson mixed model.

Model 1 shows that there were variations in the GDT-to-Calls
ratio by time of day (evening, nighttime, and late morning had
higher ratios while the afternoon period had a lower ratio). Simi-
larly, the GDT-to-Calls ratio decreased with distance from the
centroid of the coverage zones. Model 2 produced a reduced form
of this model where all coefficients were statistically significant. In
particular, the GDT-to-Calls ratio was significantly higher in the
evening and nighttime periods (essentially between 8:00 p.m. and
3:59 a.m.) and significantly lower in the afternoon period. Again,
the distance from the coverage zone centroid was significantly
negative. Model 3 added the gun-related homicide and assault
counts and the border zone identifier. However, neither of these
variables was statistically significant above-and-beyond the vari-
ables found for the reduced form model (model 2).

An alternative model was run in which the spatial autocorre-
lation component was tested only for a distance of one mile.
Supplementary material presents this alternative. However, the
results were essentially the same. In summary, in 2010 the GDT-to-
Calls ratio varied by time of day (evening and nighttime were
higher; the daytime and especially the afternoon were lower) and
by distance from the zone centroids.

3.3.2. Distance decay by time period
We ran the Poisson-Lognormal-CAR exposure model for each of

the six 4-h time periods to estimate the decline in the GDT-to-Calls
ratio by distance from the zone centroid. We examined the coeffi-
cient of the distance variable for each of the six time periods as a
partial prediction of the GDT-to-Calls ratio (see Fig. 9). That is, this
figure shows the partial prediction from the distance component
only (i.e., neither the number of Calls for Service nor the CAR
component are included in the prediction on the Y-axis). Initially,
we had expected that the distance decay would be stronger during
the daytime hours than at nighttime. However, inconsistent results
were found that only partially supported that hypothesis.

The sharpest decay occurred during the morning period (8:00
a.m.e11:59), as expected. Similarly, the decay for the late night
period (Midnight e 3:59 a.m.) and late afternoon (4:00 p.m.e7:59
p.m.) showed a less steep decay. The flattest decay was for the af-
ternoon period (Noon e 3:59 p.m.), while the evening period (8:00
p.m.e11:59 p.m.) actually showed a positive slope (i.e., the sensi-
tivity of GDT relative to Calls increased with distance). In short, the
results are only partially consistent with the hypothesis that the
distance decay in relative GDT sensitivity would be less sharp at
nighttime due to less ambient noise.

3.3.3. Spatial autocorrelation and residual errors
The CAR function is an observation-specific spatial adjustment



Fig. 9. Effect on GDT sensitivity of distance from zone centroid.
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for local spatial autocorrelation, fi (or Phi). We examined the in-
dividual Phi values for the full model (model 1), but they involved
less than a 1% adjustment for all grid cells. Therefore, they were
very minor adjustments to the predicted values for each grid cell-
time period combination.

We also examined the residual errors to see if there were areas
where the model under-estimated (i.e., the relative GDT sensitivity
was higher than expected by the model) or over-estimated (i.e., the
relative GDT sensitivity was lower than expected by the model).
Because the Poisson-Lognormal-CAR model overestimated GDT
Fig. 10. Overestimation and Underestimation of Space-Time M
detections relative to Calls for Service by 67%, it was necessary to
re-scale the predicted values to equal the actual number of GDT
detections.

Fig. 10 shows these residuals. There were two areas where the
model underestimated, one in the northern part of the coverage
area (around Columbia Heights in Ward 1) and a second in the
central part of the coverage area (around Gallaudet, Ivy City and
Carter Langston in Ward 5). For these areas, GDT detections were
greater than that predicted by the model.

On the other hand, there were two areas where the relative GDT
odels (overestimation in red; underestimation in blue).
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sensitivity was less than that predicted by the model, one in the
southwest corner of the coverage (around Washington Highlands
in Ward 8) and the other north of the coverage area center (around
Edgewood and Bloomingdale in Ward 5). It is possible that more
acoustical sensors are needed in those areas to improve GDT
sensitivity.

4. Discussion

The results of these analyses show that relative GDT sensitivity
(the GDT-to-Calls ratio) varies both by time and by space. In
particularly, the relative sensitivity of GDT was much stronger in
the evening and at nighttime than in the daytime, varying between
1.5 and 2.3 times as much as the number of Calls for Service. On the
other hand, the GDT-to-Calls ratio was close to parity during the
daytime hours and actually fell below 1.0 for 6 h during the day-
time. The reason for this lack of daytime sensitivity is undoubtedly
the level of ambient noise, presumably from traffic and construc-
tion noise.

In terms of spatial variation, we found that GDT sensitivity
decreased with distance from the nearest zone centroid with the
exception of the evening period. We suspect this has to do with
where the acoustical sensors are located, with distance being a
limiting factor. But since we do not know those locations, we could
not estimate an optimal distance for locating the GDT sensors.
However, the data certainly point to a general distance decay
pattern and also point to certain areas of the city where the relative
sensitivity is weaker. Addingmore sensors in those locations would
certainly help improve the sensitivity of the technology.

We do not know why the GDT-to-Calls ratio increased by dis-
tance during the evening period. Both GDT and Calls for Service
separately decreased with distance from the zone centroid during
this period. However, the sensitivity of GDT relative to the calls
increased in the evening, but decreased for all other time periods.
More research on this point is necessary.

These results corroborate early research on the differences be-
tween GDT and reported crimes. Carr and Doleac (2015a) found
strong correlations between gunshot and both reported crimes and
Calls for Service but noted different trends in gunshots and re-
ported crimes across a city based on local land usage. Our results
suggest a similar relationship.

The limited relationship between firearm-related Calls for Ser-
vice and GDT activations is to be expected. Gunshots that do not
result in death or serious injury are frequently underreported
(Mazerolle, Watkins et al., 1999) so it is not surprising that Calls for
Service for gun-related crimes are only partially related to activa-
tions of the system. Also, in some neighborhoods, people may be
more sensitive to hearing gunshots and, therefore, more likely to
call in, whereas in other neighborhoods the sound of a gunshotmay
be so routine as to not result in calls, perhaps because residents
perceive that the calls do not result in any reductions in violence. In
other words, GDT and Calls for Service may be capturing different
phenomena.

Another consideration is the spatial accuracy of GDT compared
to Calls for Service. Unless a caller is close to where the gunshots
were fired, that person cannot accurately identify the spatial loca-
tion, only the general direction. On the other hand, GDT is very
accurate with respect to the spatial location of a gunshot. Even
indoors, the sound of a gunshot can be reliably identified from at
least 1000 feet away (Bieler & La Vigne, 2014). Thus, GDT offers
better accuracy for those events that it detected. But, as we saw, its
sensitivity is not better than human response during the daytime.

These results also demonstrate the challenge in correctly iden-
tifying multiple calls for the same gunshot event. Individuals who
call the police may reside in different directions from the gunshot
so that their directional accuracy is relative. It is possible, though
not practical, to triangulate calls from multiple callers to approxi-
mate the location of a gunshot. However, few police departments
are going to assign staff to do that or fund the development of
software for triangulating human response to a gunshot. GDT, on
the other hand, can do this quickly with very good spatial accuracy
(25 m).

4.1. Limitations

There are several limitations to our study. First, we did not have
an independent data base of gunshot events by which both GDT
and Calls for Service could be evaluated. The gun-related crime data
set that we used covered fewer than 10% of the detections and also
did not have a time of day identifier. It would be possible to get a
more accurate data set of gun crimes that did have a time stamp in
order to evaluate the accuracy of GDT, but this would only cover
those gun shots that led to a crime, not all gun shots.

Second, in modeling the GDT-to-Calls ratio by space and time,
we only examined the hourly variation in time, grouped into 4 h
periods. But, as mentioned, there were also seasonal variations that
could alter the sensitivity, particularly on January 1st where there is
an excessive number of gunshots fired, mostly in celebration.

Third, the Poisson-Lognormal-CAR model that was used to
examine the space-time dataset has its own problems. In our use of
it, the model over-estimated the number of GDT detections relative
to Calls for Service. In other studies, however, this type of model has
underestimated the dependent variable (Levine, 2017). Better sta-
tistical models may produce more accurate representations in the
future.

4.2. Conclusion

Future research could greatly improve the use of GDT data by
better understanding how different ranges and conditions affect
GDT's ability to detect gunshots and about the extent to which
police should depend on GDT as opposed to public Calls for Service
as well as how the two data sources can be used in combination.
Nevertheless, based on these findings as well as prior analyses, this
study concludes that GDT may offer a valuable new source of data
on gun violence, but with some limitations in terms of time of day
and distance from acoustical sensors.
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