کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
166205 1423469 2006 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Accelerated Recursive Feature Elimination Based on Support Vector Machine for Key Variable Identification1
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Accelerated Recursive Feature Elimination Based on Support Vector Machine for Key Variable Identification1
چکیده انگلیسی

Key variable identification for classifications is related to many trouble-shooting problems in process industries. Recursive feature elimination based on support vector machine (SVM-RFE) has been proposed recently in application for feature selection in cancer diagnosis. In this paper, SVM-RFE is used to the key variable selection in fault diagnosis, and an accelerated SVM-RFE procedure based on heuristic criterion is proposed. The data from Tennessee Eastman process (TEP) simulator is used to evaluate the effectiveness of the key variable selection using accelerated SVM-RFE (A-SVM-RFE). A-SVM-RFE integrates computational rate and algorithm effectiveness into a consistent framework. It not only can correctly identify the key variables, but also has very good computational rate. In comparison with contribution charts combined with principal component aralysis (PCA) and other two SVM-RFE algorithms, A-SVM-RFE performs better. It is more fitting for industrial application.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chinese Journal of Chemical Engineering - Volume 14, Issue 1, February 2006, Pages 65-72