کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1890517 1043823 2007 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Convergence analysis of Chauvin's PCA learning algorithm with a constant learning rate
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک آماری و غیرخطی
پیش نمایش صفحه اول مقاله
Convergence analysis of Chauvin's PCA learning algorithm with a constant learning rate
چکیده انگلیسی
The convergence of Chauvin's PCA learning algorithm with a constant learning rate is studied in this paper by using a DDT method (deterministic discrete-time system method). Different from the DCT method (deterministic continuous-time system method), the DDT method does not require that the learning rate converges to zero. An invariant set of Chauvin's algorithm with a constant learning rate is obtained so that the non-divergence of this algorithm can be guaranteed. Rigorous mathematic proofs are provided to prove the local convergence of this algorithm.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chaos, Solitons & Fractals - Volume 32, Issue 4, May 2007, Pages 1562-1571
نویسندگان
, ,