
The Spanish Review of Financial Economics 12 (2014) 40–45

The  Spanish  Review  of  Financial  Economics

www.elsev ier .es /s r fe

Article

Modeling  credit  spreads  under  multifactor  stochastic  volatility�

Jacinto  Marabel  Romoa,b

a BBVA, Vía de los Poblados s/n, 28033 Madrid, Spain
b Department of Management Sciences, University of Alcalá (UAH), Plaza de la Victoria 2, 28802 Alcalá de Henares, Madrid, Spain

a  r  t  i  c  l e  i  n  f  o

Article history:
Received 10 April 2013
Accepted 26 June 2013
Available online 1 January 2014

JEL classification:
G12
G13
G31
G32
G33

Keywords:
Credit spreads
Credit rating
Stochastic volatility
Multifactor
Structural models

a  b  s  t  r  a  c  t

The  empirical  tests  of traditional  structural  models  of credit  risk  tend  to  indicate  that  such  models  have
been  unsuccessful  in  the  modeling  of credit  spreads.  To address  these  negative  findings  some  authors
introduce  single-factor  stochastic  volatility  specifications  and/or  jumps.

In  the  yield  curve  literature  it is widely  accepted  that  one-factor  is not  sufficient  to  capture  the  time
variation  and  cross-sectional  variation  in the term  structure.  This article  introduces  a  two-factor  stochas-
tic volatility  specification  within  the  structural  model  of  credit  risk.  One  of the  factors  determines  the
correlation  between  short-term  firms’  assets  returns  and  variance,  whereas  the  other  factor  determines
the  correlation  between  long-term  returns  and  variance.  The  numerical  tests  reveal how  the introduc-
tion  of  two  volatility  factors  can  generate  a wide  range  of  combinations  associated  with  short-term  and
long-term  patters  corresponding  to credit  spreads.  In this  sense,  multi-factor  stochastic  volatility  speci-
fications  provide  more  flexibility  than  single-factor  models  to capture  a  wide  range of  shapes  associated
with  the  term  structure  of  credit  spreads  consistent  with  the  empirical  evidence.
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1. Introduction

Structural models of credit risk formulate explicit assumptions
about the dynamics of a firm’s assets, its capital structure and its
debt. In this case, the default event happens if firm’s assets are
not sufficient to pay the debt and corporate liabilities can be con-
sidered as contingent claims on the firm’s assets. The credit risk
literature based on the structural approach begins with the study
of Merton (1974), who applies the option pricing theory developed
by Black and Scholes (1973) to model credit spreads, where the
credit spread is defined as the difference between the yield of a
corporate bond and the associated yield on Treasury bonds with
the closest matching maturity.

The empirical tests of traditional structural models of credit
risk tend to indicate that such models have been unsuccessful in
the modeling of credit spreads. In particular, Jones et al. (1984)
and Huang and Huang (2003), among others, show that predicted
credit spreads are far below observed ones. To address these neg-
ative findings some authors, such as Zhang et al. (2009), introduce
a single-factor stochastic volatility model with jumps within the
Merton (1974) framework. They show that their model improves
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the match between predicted and observed credit spreads, espe-
cially for investment-grade companies. Unfortunately, the results
are less satisfactory for low investment grade and speculative
grade. In theory, jumps can help to match the observed credit
spread levels for investment grade bonds and short maturities. But
empirical evidence is rather inconclusive. Collin-Dufresne et al.
(2003) have found that only a small fraction of observed credit
spreads of aggregate portfolios can be explained by jump risk. On
the other hand, Cremers et al. (2008) suggest that the addition of
jumps and jump risk premia brings predicted yield spread levels
much closer to observed ones.

Importantly, the study of Zhang et al. (2009) considers a sin-
gle stochastic volatility factor as in Heston (1993). Within the
equity option valuation context, Christoffersen et al. (2009) extend
the original Heston (1993) framework to generate a two-factor
stochastic volatility model built upon the square root process. This
article introduces a two-factor stochastic volatility specification
within the structural Merton (1974) framework. The advantage
is that a two-factor model provides more flexibility to model the
volatility term structure. In this sense, one of the factors deter-
mines the correlation between short-term firms’ assets returns
and variance, whereas the other factor determines the correlation
between long-term returns and variance. Hence, the two-factor
specification is able to generate more flexible credit spread term
structures to match the observed term structures associated with
credit spreads.
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The rest of the paper proceeds as follows. Section 2 presents the
main features of the two-factor stochastic volatility specification
and develops semi-closed-form solutions for the price of credit
spreads and default probabilities. Section 3 provides a numerical
analysis which shows that the model is able to generate credit
spread term structures consistent with the empirical evidence.
This section also offers a sensitivity analysis of credit spreads with
respect to the model parameters. Finally, Section 4 offers conclud-
ing remarks.

2. A structural model of credit risk under a two-factor
stochastic volatility framework

Let us assume the same market framework as in Merton (1974).
Within this framework, firms issue a zero coupon bond with a
promised payment B at maturity t = T. In this case, default occurs
only at maturity with debt face value as default boundary. In the
event of default, the absolute priority rule prevails.

Let
{

At ∈ R  t≥0
}

be the price process of the firm’s assets and let
us denote by Yt = ln At the log-return vector. For simplicity, I assume
that the continuously compounded risk-free rate r and asset payout
ratio q are constant. Let � denote the probability measure defined
on a probability space

(
�,  F, �

)
such that asset prices expressed in

terms of the current account are martingales. We  denote this prob-
ability measure as the risk-neutral measure. As in Christoffersen
et al. (2009), I consider a two-factor specification for the variance
process and I assume the following dynamics for the return process
Yt under �:

dYt =
[

r − q − 1
2

2∑
i=1

vit

]
dt +

2∑
i=1

√
vitdZit (1)

with:

dvit = �i

(
�i − vit

)
dt + �i

√
vitdWit

where �i represents the long-term mean corresponding to the
instantaneous variance factor i (for i = 1, 2), �i denotes the speed of
mean reversion and, finally, �i represents the volatility of the vari-
ance factor i. For analytical convenience, let us rewrite the previous
equation as follows:

dvit = (ai − bivit) dt + �i
√

vitdWit (2)

where bi = �i and ai = �i�i. In Eqs. (1) and (2) Zit and Wit are Wiener
processes such that:

dZitdWjt =
{

�idt for i = j

0 for i /= j

On the other hand, Z1t and Z2t are uncorrelated. In addition, W1t and
W2t are also uncorrelated. The single-factor Heston (1993) model
can be obtained as a particular case of the two-factor specification
considering only one volatility factor. The multifactor specification
of Eqs. (1) and (2) accounts for a richer variance–covariance struc-
ture. In particular, the conditional variance of the return process is:

Vt:= 1
dt

Var(dYt) =
2∑

i=1

vit

whereas, as shown by Christoffersen et al. (2009), the correlation
between the asset return and the variance process is:

�AtVt :=Corr (dYt, dVt) = �1�1v1t + �2�2v2t√
�2

1v1t + �2
2v2t

√
v1t + v2t

Importantly, two-factor specification, unlike the single-factor
stochastic volatility models, allows for stochastic correlation
between the asset return and the variance process. Another
advantage of the two-factor model with respect to single-factor
specifications is that it provides more flexibility to model the
volatility term structure. In this sense, the two-factor model is able
to generate more flexible patterns corresponding to the term struc-
ture of credit spreads.

2.1. Pricing credit spreads and default probabilities

In this section I follow the methodology of Lewis (2000) and da
Fonseca et al. (2007) to calculate option prices efficiently in terms of
the generalized Fourier transform associated with the payoff func-
tion and with the asset return. In this sense, let us consider a generic
payoff on the terminal value of the underlying asset, at time t = T,
under the risk-neutral probability measure w(YT ). From the Funda-
mental Theorem of Asset Pricing we have that the time t = 0 price
of this option, denoted OP0, is given by:

OP0 = e−rT E� [w (YT )] = e−rT

∫
R

w (YT ) ıT (YT ) dYT (3)

where ıT (YT ) is the risk-neutral density function of YT. The Laplace
transform of the asset return is defined as:

� (	; Y0, T) :=E� [e	YT ] =
∫
R

e	YT ıT (YT ) dYT 	 ∈ R

On the other hand, the Fourier transform corresponding to w(YT )
is given by:

ŵ (z) =
∫
R

eizYT w (YT ) dYT z ∈ C

with

w (YT ) = 1
2


∫
�

e−izYT ŵ (z) dz

where � ⊂ C  is the admissible integration domain in the complex
plain corresponding to the generalized Fourier transform associ-
ated with the payoff function ŵ (z) and where i2 = −1. Substituting
previous expression in Eq. (3) yields:

OP0 = e−rT

2


∫
�

� (	 = −iz; Y0, T) ŵ (z) dz (4)

where we have used the Fubini theorem. From the previous equa-
tion, to obtain a semi-closed-form solution for the option price we
have to calculate the Laplace transform of the asset return, as well
as the Fourier transform associated with the payoff function.

2.1.1. The Laplace transform of the asset return
Marabel Romo (2013) shows that, under the risk-neutral mea-

sure �,  the Laplace transform associated with the two-factor
specification �(	 ; Y0,T) is given by:

�
(

	; Y0,T
)

= e

B(	,T)+
2∑

i=1

Mi(	,T)vi0+	Y0

(5)

where Mi (	, T) for i = 1, 2, is given by:

Mi (	, T) = bi − 	�i�i + ˛i

�2
i

[
1 − eT˛i

1 − ˇie
T˛i

]
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