DIAGNOSIS OF PEDIATRIC UROLITHIASIS: ROLE OF ULTRASOUND AND COMPUTERIZED TOMOGRAPHY

JEFFREY S. PALMER,* ERIN R. DONAHER, MARY ANN O'RIORDAN AND KATHERINE MACRAE DELL

From the Division of Pediatric Urology (JSP) and Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio

ABSTRACT

Purpose: Pediatric urolithiasis is believed to be uncommon, and may present without the classic symptoms of renal colic. The objectives of this study were to describe the presenting features and radiographic evaluation of pediatric urolithiasis, and to determine the accuracy of ultrasound and unenhanced computerized tomography (CT) in detecting urolithiasis.

Materials and Methods: We retrospectively reviewed the charts of children 0 to 18 years old with urolithiasis. Data collected included age, sex, race, presenting symptoms, radiographic studies performed during initial evaluation, calculus location and family history of urolithiasis.

Results: A total of 75 patients had complete data for analysis. Of these patients 54 (72%) had urolithiasis symptoms (flank pain, gross hematuria or both). Patients with urolithiasis symptoms were older at diagnosis (median age 11.9 years vs 1.0 years, p < 0.001) and were more likely to have a family history of urolithiasis (54% vs 14%, p = 0.002). The 39 CTs performed were accurate in detecting calculi in children with urolithiasis symptoms (96% to 100%) and in those without symptoms (100%). The 36 ultrasounds performed had more variable accuracy in children with urolithiasis symptoms (33% to 100%) vs those without symptoms (89%). Ultrasound failed to detect urolithiasis in 41% of the patients with urolithiasis symptoms, compared to 5% with CT. CT was also highly accurate regardless of calculus location (89% to 100%), whereas ultrasound was again more variable (kidney 90%, kidney and ureter 75%, ureter alone 38%).

Conclusions: Ultrasound failed to detect calculi in 41% of the children with urolithiasis symptoms, whereas CT was highly accurate in all situations. Unenhanced CT should be performed in all children with persistent urolithiasis symptoms and nondiagnostic ultrasound.

KEY WORDS: urinary calculi; ultrasonography; tomography, x-ray computed; pediatrics; diagnosis

Urolithiasis is common in adults but is believed to be relatively rare in the general pediatric population. The incidence of urolithiasis in adults is 3% to 12%.^{1,2} Previous studies have shown that 1 in 1,000 to 1 in 7,500 pediatric hospital admissions are due to urolithiasis.^{3, 4} However, since most children are not admitted to the hospital for evaluation or treatment of urolithiasis, the actual incidence in children is unknown. The presentation of urolithiasis in children also differs from that in adults. While the typical adult presentation of urolithiasis is unilateral colicky flank pain, only about 50% of pediatric patients with urolithiasis present with symptoms of pain.^{4,5} Because urolithiasis may be perceived as rare in pediatric patients, the diagnosis may not be considered in children who present with symptoms other than flank pain, such as gross hematuria.

The diagnosis of pediatric urolithiasis may also be problematic. Published data reveal that unenhanced spiral computerized tomography (CT) is the gold standard for diagnosing urinary tract calculi in adults, and has been demonstrated to be more sensitive and specific than either ultrasound or excretory urography (IVP) in detecting calculi in this population. $^{6-9}$ Unenhanced CT does not expose the patient to intravenous contrast material, and provides greater detail about calculus size and location than either IVP or ultrasound. However, CT carries the risk of expo-

Submitted for publication January 29, 2005.

Study received institutional review board approval. * Correspondence: Division of Pediatric Urology, Rainbow Babies and Children's Hospital, 11100 Euclid Ave., Cleveland, Ohio 44106 (tele-phone: 216-844-8455; FAX: 216-844-8179; e-mail: jeffrey.palmer@ case.edu).

sure to ionizing radiation, which can be a significant issue in children.

Because of the low clinical suspicion for urolithiasis as well as potential concerns about radiation exposure, primary care providers may choose ultrasound as the initial radiographic study for children with symptoms that can be associated with urolithiasis, such as flank pain, abdominal pain and gross hematuria. However, the accuracy of ultrasound in detecting pediatric urolithiasis has not been well studied. In our practices we noted several children who presented with urolithiasis symptoms such as gross hematuria, in whom the initial ultrasound was normal but subsequent CT showed the presence of urolithiasis. Therefore, we hypothesized that ultrasound as a first line test may fail to detect a significant proportion of pediatric urolithiasis.

The objectives of this study were to describe the presenting features and radiographic evaluation of pediatric patients with urolithiasis referred to pediatric nephrologists or pediatric urologists at a tertiary care center, and to determine the accuracy of ultrasound in detecting urolithiasis in this population.

MATERIALS AND METHODS

A retrospective chart review was performed in all patients 0 to 18 years old evaluated as outpatients and/or inpatients at our institution between October 2002 and January 2004. Patients with urolithiasis were identified by billing records, International Classification of Disease-9 codes and lists generated by individual physicians. Urolithiasis was defined as radiographic identification of a calculus or documented cal-

	Study Population	Urolithiasis Symptoms*	Other or No Symptoms	p Value
No. pts	75	54	21	
Median yrs age (range)	10.6 (0.08-17.8)	11.9 (3.4–17.8)	1.0 (0.08-11.6)	< 0.001
No. boys	37	28	9	
No. girls	38	26	12	0.48
No. white race pts (other)	53 (22)	41 (13)	12 (9)	0.11
No. pos family history (%)	32 (43)	29 (54)	3 (14)	0.002

* Urolithiasis symptoms were defined as abdominal and/or flank pain, gross hematuria or both.

culus passage. Data collected included age, sex, race, the presence or absence of urolithiasis symptoms (gross hematuria, abdominal and/or flank pain or both) at presentation, the presence or absence of microscopic hematuria, radiographic studies performed during the initial evaluation (ultrasound, enhanced and/or unenhanced CT, excretory urography or abdominal plain film), calculus location (kidney and/or ureter or unknown) and family history of urolithiasis.

Patient demographics were described overall and by group, defined by the presence or absence of symptoms. Age was described by the median and range, and race, sex and family history by proportion of frequencies or percentages of the total. Age was compared using the Wilcoxon rank sum test, and the nominal variables were compared using chi-square analysis. Symptom and location classifications are described with frequencies and percentages. Radiographic evaluations are described as the number performed and percentage of those with positive findings. These results are stratified by symptom classification and calculus location. The level of significance was set at 0.05. All statistical analyses were done using SAS @8.2 statistical software.

RESULTS

A total of 76 pediatric patients with urolithiasis were identified, of which 1 was excluded due to incomplete data. The demographic characteristics of the study population are summarized in table 1. Patients were further subdivided into 2 groups based on the presence or absence of urolithiasis symptoms at presentation. Patients with vs those without urolithiasis symptoms had statistically significant differences in age at diagnosis (median 11.9 years vs 1.0 years, p <0.001) and the presence of a positive family history of urolithiasis (54% vs 14%, p = 0.002). There were no significant differences between the 2 subgroups with respect to sex or race.

A total of 54 patients (72%) had urolithiasis symptoms (abdominal and/or flank pain, gross hematuria or both), of whom 48 (89%) reported some type of pain. Among the patients 33 (61%) reported pain alone, of whom 10 also had microscopic hematuria, and 15 (28%) reported pain and gross hematuria. The remaining 21 patients (39%) did not have urolithiasis symptoms, although 3 had microscopic hematuria.

The radiographic evaluation of patients by symptom presentation is summarized in table 2. The majority of patients with pain alone or pain and gross hematuria (73%) underwent CT. The presence of microscopic hematuria in patients with pain alone appeared to have only a modest effect on whether CT or ultrasound was performed. Of the 10 patients with pain and microscopic hematuria 80% received CTs. Of the 23 patients with pain and no microscopic hematuria 65% received CTs. The 39 CTs performed were highly accurate, with a 96% to 100% detection rate in patients with or without urolithiasis symptoms. The majority of CTs performed in this study (82%) were done as unenhanced studies (ie suspected urolithiasis was the indication for the study). The remainder (18%) were enhanced and unenhanced studies performed for the indication of abdominal pain.

The accuracy of the 36 ultrasounds performed was more variable. For patients presenting with pain alone or pain and

gross hematuria the detection rate was low (33% and 57% of studies were positive, respectively). For the 4 patients with gross hematuria alone who underwent ultrasound all studies were positive. In patients with other symptoms or no symptoms the ultrasound detection rate was high (89% of studies were positive). Ultrasound was performed in these patients because of urinary tract infection (8 patients), prematurity with chronic diuretic therapy (3), microscopic hematuria (3), followup of a known urological disorder (2), urgency/frequency (1), hypercalciuria following treatment with high dose calcium and phosphorus (1), and screening ultrasound in association with Turner syndrome (1). CT was performed in 2 patients without urolithiasis symptoms in whom ultrasound revealed hydronephrosis but no calculus. Two additional patients without urolithiasis symptoms did not undergo ultrasound or CT. These patients were diagnosed by an incidental finding on an abdominal plain film during inpatient evaluation for respiratory distress, and passage of a calculus in association with a known family history of urolithiasis.

To determine if the presenting symptom(s) could have influenced the choice of the initial diagnostic evaluation(s) in patients with urolithiasis symptoms, we examined the sequence and accuracy of diagnostic studies performed in that subgroup, including the choice of initial diagnostic study (ultrasound vs CT). As demonstrated in the figure, 56% of patients with urolithiasis symptoms underwent CT as the initial diagnostic study, with a high detection rate (97% of studies were positive). There was 1 patient in whom initial CT was negative. That patient subsequently had recurrence of urolithiasis symptoms and was diagnosed by calculus passage.

Only 31% of patients with urolithiasis symptoms underwent ultrasound as the initial diagnostic test. In this population the detection rate was lower (59% of studies were positive). Therefore, ultrasound failed to detect urolithiasis in 41% of patients with urolithiasis symptoms. Six patients with negative ultrasound subsequently underwent CTs, all of which were positive. One patient with a negative ultrasound was diagnosed by calculus passage. There were 7 patients with urolithiasis symptoms who did not undergo ultrasound or CT, all of whom were diagnosed by IVP.

We also examined whether the symptoms at presentation were associated with the location of the calculus (ie kidney, ureter or both). As shown in table 3, half of the patients with kidney calculi alone had no urolithiasis symptoms. In contrast, of the 32 patients with ureteral calculi alone the overwhelming majority (91%) had 1 or more urolithiasis symp-

TABLE 2. Radiographic evaluation and symptoms							
	Urolithiasis Symptoms						
Diagnostic Study	Pain Only	Gross Hematuria Only	Pain + Gross Hematuria	Other or No Symptoms			
No. pts No. ultrasound (% pos) No. CT (% pos)	33 6 (33) 23 (96)	6 4 (100) 2 (100)	15 7 (57) 12 (100)	21 19 (89) 2 (100)			

Copyright © American Urological Association. Unauthorized reproduction of this article is prohibited

Download English Version:

https://daneshyari.com/en/article/10051681

Download Persian Version:

https://daneshyari.com/article/10051681

Daneshyari.com