Contents lists available at ScienceDirect

IBRO Reports

journal homepage: www.elsevier.com/locate/ibror

Effects of primatological training on anthropomorphic valuations of emotions

Roberto E. Mercadillo^{a,b}, Sarael Alcauter^c, Fernando A. Barrios^{c,*}

^a Area of Neurosciences, Biology of Reproduction Department, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco 186, Leyes de Reforma 1ra Secc, 09340, Mexico City, Mexico

^b Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico

^c Universidad Nacional Autónoma de México, Instituto de Neurobiología, Blvd. Juriquilla 3001, Querétaro, 76230 Querétaro, Mexico

ARTICLE INFO

Keywords: Anthropomorphism Primatology Emotional expressions Motor processes Sensory processes

ABSTRACT

Anthropomorphism implies the attribution of human like emotions and cognition to non-human animals. This tendency may be conditioned by similar morphologies between mammals and is particularly important in primatology. Some neurocognitive findings suggest that prefrontal brain activity associated to conceptual learning influences anthropomorphic judgments, nevertheless, individual differences are also presented indicating that training on primate behavior may influence anthropomorphism. We identified and interpreted brain activity registered by functional magnetic resonance imaging while seven trained primatologists (39.42 ± 10.86 yr.) inferred emotions in human primates, non-human primates and non-primate animals; comparisons were made with seven matched scholars with no primatological training (38.71 ± 9.34 yr.). Primatologists manifested cerebellar, occipital and frontal activity related to sensory and motor processes when valuating humans and non-human primates, but not for other animals. So, primatological training and experience may elicit brain plasticity processes allowing inner motor and sensory models through frontal and cerebellar interactions.

1. Introduction

Anthropomorphism implies the attribution of human like emotions and cognition to other animals. This tendency discussed since Darwin's animal's emotions proposal involves complex human cognitive properties permitting the inference of other's psychological states (Kiley-Worthington, 2017). Contemporary neurocognitive approaches to study anthropomorphism has been developed over the years; a more anthropomorphic thinking is correlated to a larger gray matter volume in the left temporo-parietal brain region involved in mentalizing (Cullen et al., 2014). Also, the recognition of humans, non-human primates, and dogs' emotions involves the activation of the prefrontal brain region cognitively associated to causal explanations, but the degree of this activation varies according to the individuals' beliefs about the nonhuman animals' mental abilities (Spunt et al., 2017).

Anthropomorphic attributions have been suggested as a consequence of similarities between human and non-human animals' morphologies, which may influence the accuracy to interpret complex behaviors and cognition in non-human primates and involves methodological discussions in ethology, anthropology, evolutionary psychology, conservation, or philosophy of mind (Chan, 2012; KileyWorthington, 2017; Spunt et al., 2017). Emotions are particularly important in the anthropomorphic discussion since they are used as social cues to be interpreted (Spunt et al., 2016) based on occipital, parietal, frontal and cerebellar brain functions allowing inner models throughout sensory and motor processes to interpret own and others' expressions (Fusar-Poli et al., 2009).

In this study we aimed to identify and interpret the neurofunctional correlates while trained primatologists infer emotions in human primates, non-human primates and non-primate animals, and to compare these functions with non-trained individuals. We expected frontal, occipital and cerebellar brain activity related to visual, motor and conceptual inferences when primatologists infer non-human primates' emotions.

2. Method

2.1. Participants and task

Seven academic specialists on primate behavior trained during at least eight years (3 women, *mean* age = 39.42 ± 10.86 yr.) and seven biomedical researchers with no primate behavior training (4 women,

* Corresponding author.

E-mail addresses: remercadilloca@conacyt.mx (R.E. Mercadillo), alcauter@inb.unam.mx (S. Alcauter), fbarrios@unam.mx (F.A. Barrios).

https://doi.org/10.1016/j.ibror.2018.09.001

Received 5 June 2018; Accepted 4 September 2018

2451-8301/ © 2018 The Authors. Published by Elsevier Ltd on behalf of International Brain Research Organization. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/).

Table 1

Empathic dimensions evaluated in the Interpersonal Reactivity Index.

	Primatologist		Contro	Control	
Empathic dimensions	$M \pm$ S.D.	Median	$M \pm$ S.D.	Median	
Perspective Taking Fantasy Empathic Concern Personal Distress	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	16 14 22 8	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	16 10 20 14	

Note: No statistical differences between groups were observed when the Kruskal-Wallis test was applied.

Table 2

Non-human primate species represented in the pictures used for the experimental design.

	Common name	Species	
New world primates	Black-handed spider monkey	Ateles geoffroyi	
-	Black-headed spider monkey	Ateles fusciceps	
	Mantled howler monkey	Alouatta palliata	
	Black howler monkey	Alouatta caraya	
	White-headed capuchin	Cebus capucinus	
	Kaapori capuchin	Cebus kaapori	
	Red uacari	Cacajao calvus	
Old world primates	Rhesus macaque	Macaca fascicularis	
	Arunachal macaque	Macaca munzala	
	Tonkin snub-nosed monkey	Rhinopithecus avunculus	
	Vervet monkey	Chlorocebus pygerythrus	
	African green monkey	Chlorocebus aethiops	
	Putty-nosed monkey	Cercopithecus nictitans	
	Mandrill	Mandrillus sphinx	
	Hamadryas baboon	Papio hamadryas	
	Lar gibbon	Hylobates lar	
	Chimpanzee	Pan troglodytes	
	Bonobo	Pan paniscus	
	Bornean orangutan	Pongo pygmaeus	
	Sumatran orangutan	Pongo abelii	
	Western lowland gorilla	Gorilla gorilla gorilla	

IBRO Reports 5 (2018) 54–59

Table 3

Non-primate animal species represented in the pictures used for the experimental design.

	Common name	Species
Mammals	Porcupine	Coendou prehensilis
	Polar bear	Ursus maritimus
	Grizzly bear	Ursus arctos horribilis
	Giant panda	Ailuropoda melanoleuca
	Red panda	Ailurus fulgens
	Koala	Phascolarctos cinereus
	Wild pig	Sus scrofa
	White rhinoceros	Ceratotherium simum
	African elephant	Loxodonta africana
	Indian elephant	Elephas maximus indicus
	Camel	Camelus dromedarius
	Cow	Bos primigenius taurus
	Donkey	Equus africanus asinus
	Horse	Equus ferus caballus
	Sheep	Ovis aries
	Elk	Alces alces
	Chipmunk	Sciurus vulgaris
	Rabbit	Oryctolagus cuniculus cuniculu
	Weasel	Mustela nivalis nivalis
	Cat	Felis silvestris catus
	Leopard	Panthera pardus pardus
	Bengal tiger	Panthera tigris tigris
	Wolf	Canis lupus lupus
	Dog	Canis lupus familiaris
	Dolphin	Delphinus delphis
	Seal	Hydrurga leptonyx
	Sea cow	Trichechus manatus
Birds	Royal owl	Bubo bubo
	Red-lored parrot	Amazona autumnalis
	Red macaw	Ara macao
	Rooster	Gallus gallus domesticus
	Domestic duck	Anas platyrhynchos domesticu
	Upland goose	Chloephaga picta
	Mallard	Anas platyrhynchos
Reptiles	Iguana	Iguana delicatissima
	Galapagos tortoise	Chelonoidis donfaustoi
	Crocodile	Cocodylus moreletii

mean age = 38.71 ± 9.34 yr.) were recruited. Participants were righthanded and had a good mental health as verified by a neuropsychiatric interview. Since empathy may influence the brain function related to inferring others' emotions (Banissy et al., 2012), the Interpersonal Reactivity Index (Pérez-Albéniz et al., 2003) was applied to verify similar empathic attitudes in both groups (see Table 1). All the participants were pet owners (dogs and/or cats) and all of them signed an informed consent. The protocol was conducted in accordance with the Declaration of Helsinki and was approved by the Bioethics Committee of the Neurobiology Institute, Universidad Nacional Autónoma de México.

The functional MRI session consisted of three series alternating pictures in a block designed task implemented in the E-prime 2.0 software (e-Prime Psychology software tools, inc. Pittsburgh, Pa). *Series 1* alternated four blocks of human faces and four blocks of non-human primate faces; *Series 2* alternated four blocks of non-human primate faces and four blocks of non-primate animal faces; *Series 3* alternated four blocks of human faces. Also, each series alternated four blocks of scattered faces to avoid the influence of non-face elements.

Only to control attention and induce others' emotions inferences, participants were instructed to watch each picture and to press a button using a ResponseGrip (Nordic Neurolab Bergen, Norway) when they considered the picture represented happiness.

Each block comprised 10 pictures representing the same kind of stimuli (humans, non-human primates, non-primate animals, or scattered faces) and each picture was projected during 2 s allowing a total of 40 same-kind stimuli per block. A fixation cross with 1 s duration was projected after each picture to permit the motor response indicating the inference about the projected face's emotion made by the participant. This experimental design permitted series with a 360 s of total duration comprising four blocks with 30 s duration each one which is regularly used to detect BOLD signals and to perform reliably statistical contrasts between cognitive conditions. Also, we consider 2 s as enough time to watch each picture considering previous designs to evaluate emotions reported by our group (p.e. Mercadillo et al., 2011) as well as by reports focused on anthropomorphic valuations (e.g. Chaminade et al., 2007; Spunt et al., 2016).

To neutralize the effect of the finger movements over motor brain functions, we counterbalanced the experimental design so, four participants in each group (primatologist and control group) used their right index finger while the rest used the left one to indicate their emotional inferences. As well, to avoid the effect of mere visual stimulation over the primary occipital cortex, the scrambled pictures were edited with the same intensity and gray color than the pictures representing faces.

Human pictures represented 20 female and 20 male faces; nonhuman primate pictures represented seven new world primates and 14 old world primates species (see Table 2); non-primate animals represented 27 terrestrial or marine mammals, seven birds, and three reptiles species (see Table 3).

2.2. Brain images acquisition and analysis

Brain images were acquired in a 3 T Discovery MR750 GE MRI scanner (General Electric Company USA), with a 32-channel head coil, at the Resonance Magnetic Unit, Institute of Neurobiology, Universidad Nacional Autónoma de México. Anatomical high-resolution images were acquired using a 3D SPGR (spoiled gradient sequence) protocol: Download English Version:

https://daneshyari.com/en/article/10106900

Download Persian Version:

https://daneshyari.com/article/10106900

Daneshyari.com