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ARTICLE INFO ABSTRACT

Correlative ecological niche models (ENMs) aim to approximate the environmentally suitable areas for a species.
Recently, studies have explored the minimum number of occurrence records needed to implement ENMs;
however, cosmopolitan species with many occurrence records have their own challenges and the effects of larger
sample sizes on ENM performance have yet to be determined. To address this issue, we focused on a New World
rodent, Peromyscus maniculatus. We obtained locality data from GBIF (13,199 unique records), and spatially
filtered the localities. We then modeled suitable area for the species using Maxent, two different environmental
datasets (at different spatial resolutions) and different numbers of occurrence records (with 25 replicates per
sample size). We evaluated the models with k-fold cross-validation, AUC, and two omission rates. Further, we
calculated the variability among predictions within and between datasets to indicate variation in geography.
Generally, the AUC and omission rate both decreased as sample size increased. Lastly, as sample size increased,
similarities in geography increased within and between datasets. For P. maniculatus, we get similar performing
models, both in terms of geographic predictions and evaluation statistics, with as few as 10%-20% of the
maximum number of localities for each environmental dataset. Using a large number of occurrence records may
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not be necessary for ENMs, and in fact may hinder model performance.

1. Introduction

Ecological niche models (ENMs; oft termed Species Distribution
Models) are correlative models that approximate the environmentally
suitable areas for a species. They do so by comparing the overall en-
vironmental conditions available to the species with the conditions at
localities where the species occurs (Peterson et al., 2011). Because
ENMs can be projected across time and space they are frequently used
in a wide range of ecological and evolutionary studies. However, de-
spite their relevance to many fields, several methodological issues (such
as, sample bias; correlation of variables; model evaluation) hinder their
implementation in many systems (Anderson, 2012; Merow et al., 2013).
Here, we study the effects of large numbers of occurrence records on
ENMs.

Several studies have determined the minimum number of occur-
rence records needed to implement ENMs for different algorithms
(Papes and Gaubert, 2007; Proosdij et al., 2016; Stockwell and
Peterson, 2002; Wisz et al., 2008), revealing that as few as five localities
can produce biologically meaningful models (Galante et al., 2018;
Pearson et al., 2007; Shcheglovitova and Anderson, 2013). However,
cosmopolitan species with many occurrence records present their own

challenges and the effects of larger sample sizes on models have yet to
be determined. These species typically have large geographic extents
encompassing heterogeneous environments, which could potentially
pose problems when trying to estimate the environmental suitability of
areas. Using too few localities may not capture the species’ entire niche;
however, using too many occurrence records may not increase model
accuracy and could potentially hinder model performance (i.e., by
limiting the amount of available background localities and reducing
discriminatory ability; Stockwell and Peterson, 2002; VanDerWal et al.,
2009). Further, as sample size increases so do associated issues of
sampling bias and georeferencing errors, which could potentially lead
to overfit models (Bloom et al., 2018; Boria et al., 2014).

In this study, we aim to determine how large sample sizes affect
ENM evaluations and predictions in geography. Specifically, using a
widely distributed species (Peromyscus maniculatus), we calibrated and
evaluated our models using a spatial partition method, two different
environmental datasets (at different spatial resolutions) — worldclim
(Hijmans et al., 2005) and Community Climate Simulation Model 3
(CCSM3; Lorenz et al., 2016) — and an increasing number of localities.
Further, we evaluated the predictions in geographic space to determine
differences between the different datasets when they are projected
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across space. We explored if using smaller datasets would produce si-
milar models to larger datasets, without noticeable improvements in
model performance and in predictions. The results suggest that as
sample size increases there isn’t necessarily a noticeable increase in
model performance. When modeling species with a large number of
occurrence records, it may not be necessary to use all localities for
ENMs and could potentially affect model performance negatively.

2. Methods
2.1. Input data

We conducted analyses with a New World rodent, Peromyscus
maniculatus (North American deer mouse), which is indigenous to and
distributed widely across North America (Shorter et al., 2012). This
species can be found in every terrestrial ecosystem, and is the most
diverse and widespread species of deer mouse (Bedford and Hoekstra,
2015; Dewey and Dawson, 2001). This species provides a good system
because there are currently more than 100,000 occurrence records for
P. maniculatus in the Global Biodiversity Information Facility (GBIF).
We downloaded all GBIF records that contained coordinates, a pre-
served specimen, and didn’t have any geospatial errors, using the R (v.
3.4.1, R Development Core Team, 2016) package rgbif (Chamberlain,
2017). We then removed all duplicate records, and all localities that
were placed in the ocean and outside the known geographic range
(based on the NatureServe range estimate; Patterson et al., 2007). These
steps led to a final set of 13,199 unique P. maniculatus localities. Despite
efforts to improve data quality, we acknowledge errors associated with
GBIF data (e.g., Beck et al., 2014); however, the main goal of this study
is the effects of large number of occurrence records on ENMs and not
determine P. maniculatus environmental suitability.

Generally, easily accessible roads are sampled more frequently,
generating issues with sampling bias (Hijmans et al., 2000; Kadmon
et al.,, 2004; Reddy and Davalos, 2003). Additionally, spatial biases
within GBIF datasets have been shown to negatively affect ENM per-
formance (Beck et al., 2014). To reduce sampling bias, we spatially
filtered the occurrence dataset to ensure that no two localities were
within a pre-determined distance of one another (while retaining the
most localities possible) using the spThin package in R (Aiello-Lammens
et al., 2015). This method effectively reduces artificially induced spatial
auto-correlation (Boria et al., 2014; Fourcade et al., 2014; Kramer-
schadt et al., 2013). Because of the difference in resolution among our
climate predictor datasets (see below), we used a different distance for
each climate dataset, based on their grid cell size: 25km for the
worldclim dataset and 75 km for CCSM3. The worldclim dataset was
reduced to 3334 localities after applying the spatial filter, and the
CCSM3 dataset was condensed to 990 occurrence records. From these
‘full’ datasets, we then randomly sampled different numbers of occur-
rence records, with 25 replicates for each sample size. The worldclim
sample sizes were: 25; 50; 100; 500; 1000; 1500; 2000; 2500; 3000. For
CCSM3 we used: 25; 50; 75; 100; 150; 200; 300; 400; 500; 600; 700;
800. These were the occurrence datasets used in the modeling exercises
described below.

We used two different climate simulations that include climate in-
ferences for the present day: worldclim (Hijmans et al., 2005) and
Community Climate Simulation Model 3 (CCSM3; Liu et al., 2009,
downscaled by Lorenz et al., 2016). These two simulations emphasize
different tradeoffs: worldclim variables are downscaled to 1 km x 1km
grid cells for the entire world for present day, as well as 7000 and
21,000 years ago, and thus have better spatial resolution. CCSM3
variables are downscaled to 0.5 X 0.5 degrees (~50 km x 50 km) grid
cells for North America from 21,000 years ago to the present day at
500-year intervals, and thus have better temporal resolution. Although
we do not consider paleoclimates in this paper (all ENMs are based only
on contemporary climate inferences), our ultimate research goal is to
infer P. maniculatus climate suitability and hindcast the ENMs to the

84

Ecological Modelling 386 (2018) 83-88

past, which motivated our inclusion of these two climate models. The
worldclim dataset has 19 bioclimatic variables that reflect aspects of
temperature and precipitation (Hijmans et al., 2005). The worldclim
variables are known to be correlated; however, MaxEnt is a machine-
learning algorithm that uses regularization to reduce complexity
(especially regarding correlated variables), and thus not all variables
are necessarily included in the final model (Elith et al., 2011; Phillips
and Dudik, 2008). The CCSM3 environmental variables consist of 27
variables that also reflect features of temperature and precipitation
(Lorenz et al., 2016). However, for the CCSM3 variables we followed
the procedure of Maguire et al. (2016) and only used the six least
correlated variables over the last 21,000 years (minimum precipitation
of the driest quarter, maximum temperature of the warmest quarter,
mean yearly potential evapotranspiration, maximum precipitation of
the wettest quarter, mean yearly water deficit index and mean yearly
actual evapotranspiration).

To approximate modeling assumptions regarding dispersal and
biotic interactions more closely, we delimited a custom study region for
the full dataset (13,199 localities; Appendix 1 in Supplementary file),
specifically by drawing a minimum convex polygon around the lo-
calities and adding a 0.5° buffer (Anderson and Raza, 2010; Barve et al.,
2011). Background localities for calibration (default number of 10,000)
were taken from within the delimited study region only.

2.2. Ecological niche modeling

We used a machine learning approach, Maxent (v 3.3.3k; Phillips
et al., 2006; Phillips and Dudik, 2008), to generate the ENMs. This
method is a presence-background technique and has performed well in
comparison with other techniques (Elith et al., 2006; Wisz et al., 2008;
but see Fitzpatrick et al., 2013; Royle et al., 2012). To simplify the
current work, we employed the default settings (feature class and reg-
ularization) in Maxent for each sample size.

We calibrated and evaluated the ENMs using a spatial partition
approach using the R package ENMeval (Muscarella et al., 2014). The
geographic range was divided into four quadrants k = 4, with ap-
proximately equal number of occurrence records. We then built models
using a jackknife approach (k — 1) and evaluated models within the
unused partition (Boria et al., 2014; Radosavljevic and Anderson,
2014). Maxent sampled background data for the environmental vari-
ables from only the regions corresponding to the quadrants used during
calibration (Phillips et al., 2008). We did this a total of four times for
each dataset so that each partition was used for evaluation once; we
calculated evaluation statistics (see below) for each quadrant and
averaged across the four iterations.

We evaluated the models using threshold-independent and -depen-
dent methods. The threshold-independent measure, Area Under the
Curve (AUC) of the Receiver Operating Characteristic plot, is a rank-
based measure of discriminatory ability of the model. We calculated
these two ways: 1) using all localities for each dataset (according to the
chosen sample size) projected across the entire study region (Full model
AUQ), 2) calculating AUC for each evaluation quadrant and averaging
the four iterations (Mean AUC). The threshold-dependent measures
were based on different omission rate thresholding rules: 1) Minimum
Training Presence (MTP) and 2) 10% calibration omission rate.
Omission rate is the proportion of evaluation localities that are not
correctly predicted as present, and measures model overfitting. Overfit
models have omission rates higher than theoretical expectations. The
MTP sets the threshold at the smallest value of the prediction for any
grid cell that contains a calibration locality and has an expected
omission rate of zero for evaluation localities and is a more con-
servative measure of model fitness. Similarly, the 10% calibration
omission rate rule sets the threshold at a value that excludes the 10% of
calibration localities with lowest prediction and has an expected
omission rate of 0.10 (Pearson et al., 2007). We averaged the evaluation
statistics across all 25 replicates for each sample size and calculated
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