Accepted Manuscript

Evaluation of forward-modelled attenuated backscatter using an urban ceilometer network in London under clear-sky conditions

Elliott Warren, Cristina Charlton-Perez, Simone Kotthaus, Humphrey Lean, Sue Ballard, Emma Hopkin, Sue Grimmond

PII: \$1352-2310(18)30276-0

DOI: 10.1016/j.atmosenv.2018.04.045

Reference: AEA 15978

To appear in: Atmospheric Environment

Received Date: 11 December 2017

Revised Date: 17 April 2018 Accepted Date: 22 April 2018

Please cite this article as: Warren, E., Charlton-Perez, C., Kotthaus, S., Lean, H., Ballard, S., Hopkin, E., Grimmond, S., Evaluation of forward-modelled attenuated backscatter using an urban ceilometer network in London under clear-sky conditions, *Atmospheric Environment* (2018), doi: 10.1016/j.atmosenv.2018.04.045.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

1 2	Evaluation of forward-modelled attenuated backscatter using an urban ceilometer network in
	London under clear-sky conditions
3 4	Elliott Warren ^{1*} , Cristina Charlton-Perez ² , Simone Kotthaus ^{1, 3} , Humphrey Lean ² , Sue Ballard ² , Emma Hopkin ¹ , Sue Grimmond ^{1*}
5 6 7	¹ Department of Meteorology, University of Reading, UK ² Met Office@Reading, UK
8 9	³ Institut Pierre Simon Laplace (IPSL), France
10 11	*Corresponding authors: e.l.warren@pgr.reading.ac.uk, c.s.grimmond@reading.ac.uk
12	Abstract
13	Numerical weather prediction (NWP) of urban aerosols is increasingly sophisticated and accurate. In
14	the absence of large particles (e.g. rain, cloud droplets), information on atmospheric aerosols can be
15	obtained from single wavelength automatic lidars and ceilometers (ALC) that measure profiles of
16	attenuated backscatter (β_o). To assess the suitability of ALC profile observations for forecast
17	evaluation and data assimilation, a forward operator is required to convert model variables into the
18	measured quantity. Here, an aerosol forward operator (aerFO) is developed and tested with Met Office
19	NWP data (UKV 1.5 km) to obtain synthetic attenuated backscatter profiles (β_m). aerFO requires as
20	input the profiles of bulk aerosol mass mixing ratio and relative humidity to compute β_m , plus air
21	temperature and pressure to calculate the effect of water vapour absorption. Bulk aerosol
22	characteristics (e.g. mean radius and number concentration) are used to estimate optical properties.
23	ALC profile observations in London are used to assess β_m . A wavelength-dependent extinction
24	enhancement factor accounts for the change in optical properties due to aerosol swelling. Sensitivity
25	studies show the aerFO unattenuated backscatter is very sensitive to the aerosol mass and relative
26	humidity above ~60-80 %. The extinction efficiency is sensitive to the choice of aerosol constituents
27	and to ALC wavelength. Given aerosol is a tracer for boundary layer dynamics, application of the
28	aerFO has proven very useful to evaluate the performance of urban surface parameterisation schemes
29	and their ability to drive growth of the mixing layer. Implications of changing the urban surface
30	scheme within the UKV is explored using two spring cases. For the original scheme, morning β_m is
31	too high probably because of delayed vertical mixing. The new scheme reduced this persistence of
32	high morning β_m , demonstrating the importance of surface heating processes. Analysis of profiles at
33	five sites on 12 clear-sky days shows a positive, statistically significant relation between the
34	differences of modelled and measured near-surface attenuated backscatter $[\beta_m - \beta_o]$ and near-surface
35	aerosol mass. This suggests errors in near-surface attenuated backscatter can be attributed to errors in
36	the amount of aerosol estimated by the NWP scheme. Correlation increases when cases of high
37	relative humidity in the NWP model are excluded. Given the impact on aerosol optical properties
38	demonstrated, results suggest the use of a fixed, bulk aerosol for urban areas in the UKV should be
39	revisited and the lidar ratio should be constrained. As quality of the observed attenuated backscatter is
40	demonstrated to be critical for performing model evaluation, careful sensor operation and data
41	processing is vital to avoid false conclusions to be drawn about model performance.

Download English Version:

https://daneshyari.com/en/article/10113928

Download Persian Version:

https://daneshyari.com/article/10113928

<u>Daneshyari.com</u>