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Abstract

The number of training samples per class (n) required for accurate Maximum Likelihood (ML) classification is known to be affected by the

number of bands ( p) in the input image. However, the general rule which defines that n should be 10p to 30p is often enforced universally in

remote sensing without questioning its relevance to the complexity of the specific discrimination problem. Furthermore, identifying this many

training samples is often problematic when many classes and/or many bands are used. It is important, then, to test how this generally accepted rule

matches common remote sensing discrimination problems because it could be unnecessarily restrictive for many applications. This study was

primarily conducted in order to test whether the general rule defining the relationship between n and p was well-suited for ML classification of a

relatively simple remote sensing-based discrimination problem. To summarise the mean response of n-to-p for our study site, a Monte Carlo

procedure was used to randomly stack various numbers of bands into thousands of separate image combinations that were then classified using an

ML algorithm. The bands were randomly selected from a 119-band Enhanced Thematic Mapper-plus (ETM+) dataset comprised of 17 images

acquired during the 2001–2002 southern hemisphere summer agricultural growing season over an irrigation area in south-eastern Australia.

Results showed that the number of training samples needed for accurate ML classification was much lower than the current widely accepted rule.

Due to the asymptotic nature of the relationship, we found that 95% of the accuracy attained using n= 30p samples could be achieved by using

approximately 2p to 4p samples, or �1 /7th the currently recommended value of n. Our findings show that the number of training samples needed

for a simple discrimination problem is much less than that defined by the general rule and therefore the rule should not be universally enforced; the

number of training samples needed should also be determined by considering the complexity of the discrimination problem.
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1. Introduction

The Fcurse of dimensionality_ is the tendency for model

accuracy to initially increase as the number of variables (e.g.,

bands, p) used increases, but then reach a limit where accuracy

decreases—the point where the model is overfit (Hand, 1981;

Hughes, 1968; Pal & Mather, 2003). This phenomenon is

called Fpeaking_ in the pattern recognition literature (Jain &

Waller, 1978) and in the remote sensing literature has been

referred to as the Hughes (1968) effect (Foody & Arora, 1997;

Pal & Mather, 2003). Peaking is caused by a poor estimation of

the class probability density function (pdf) by the training data

(Hand, 1981). This poor estimation of the class pdf will

commonly occur in remote sensing classification when too

many bands are used with respect to training sample size (n). If

n is too small, the class pdf will not have enough precision to

accurately estimate the too complex feature space. This

phenomenon has been shown to affect the maximum likelihood

(ML) classifier (Pal & Mather, 2003) where the common

practice of modelling non-Gaussian remote sensing class pdf’s

with a single Gaussian distribution would exacerbate the issue.

In order to avoid peaking, it is common practice in remote

sensing to ensure that n be comprised of at least 10 to 30 times
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the number of discriminating wavebands (i.e., n=10p to 30p

Mather, 1999; Piper, 1987). Most likely this n-to-p relationship

was originally intended to be a Frule of thumb_, but for most,

has turned into a generic rule to be applied universally. This is

partly because this relationship is very often presented as a

definitive statement or rule without qualification (James, 1985;

Jensen, 1986; Mather, 1999; Piper, 1992; Pal & Mather, 2003).

As such, this heuristic rule is often enforced without question,

even though common sense dictates that the number of training

samples required to achieve optimal accuracy will ultimately

depend upon the discrimination problem, which in turn

depends upon the characteristics of the data, the site, and the

resultant classification level desired.

The spatial, spectral, and temporal characteristics of both the

phenomena being mapped and the data itself (in conjunction

with the quantization level of the data—Roderick et al., 1996)

certainly impact upon discrimination of classes (McVicar et al.,

2002; Woodcock & Strahler, 1987), and thus on n. Likewise,

the level of detail of the resultant classification (e.g., Anderson

level), although often related to both the data and site

characteristics, could also alter the relationship between n

and p. For example, with a given data source and a constant

number of bands, to achieve the same classification accuracy, a

species-level classification would be expected to require more

training samples than a growth form-level classification of the

same site. Likewise, a study site containing low within-class

variance and high between-class variance, like irrigated crops

with significantly different planting dates, might need less

training data than at a site where classes have high within-class

and low between-class variance, like many Eucalypt forests.

These data- and site-specific differences make it difficult to

draw generic conclusions suitable for all studies, where

different data sources, study sites, and classification levels

are employed. Also, very often, published studies combine

only a few images prior to classification (for an exception, see

Key et al., 2001), so the large number of images required to

describe the n-to-p relationship means that it is not usually

studied with remotely sensed data. That is why the fundamental

studies on the relationship between training sample size and

dimensionality for ML classification which are cited in the

remote sensing literature are based on chromosomal data

(Piper, 1987, 1992) and probability theory (Hughes, 1968)

instead of remote sensing data. The remote sensing-based

studies have either concentrated on artificial neural network

classification accuracy (Hepner, 1990; Foody et al., 1995;

Foody & Arora, 1997), or have not tested a large enough range

of n to achieve peaking in ML classification (Dobbertin &

Biging, 1996; Pal & Mather, 2003). Subsequently, the

relationship between n and p cannot be defined from these

remote sensing-based studies, but only partially inferred

(Dobbertin & Biging, 1996; Pal & Mather, 2003).

Because only part of the n-to-p relationship has been

observed in those studies (where accuracy continues to increase

with increasing p), it is also easily misinterpreted. Consequent-

ly, little is known about how the generally accepted rule

defining the ratio of n-to-p matches common remote sensing

discrimination problems. Does this general rule define the

minimum requirement needed for a relatively simple remote

sensing-based discrimination problem or does it define better

what is required for a relatively complex case? We suggest that

in the wide range of remotely sensed classification applica-

tions, this rule is unnecessarily restrictive for many discrimi-

nation problems that potentially would not need as many

training samples as n =10p to 30p to be accurately classified.

We test this hypothesis using broadband multi-temporal

classification in a Monte Carlo analysis of a dataset with high

temporal density (i.e., 17 ETM+ images in a single growing

season). We specifically aimed to determine if the general rule

defining that n= 10p to 30p was required for our relatively

simple discrimination problem. Due to the range of n and p

studied here, the current work provided a characterisation of

multi-temporal accuracy trends where the dependence on the

timing of image acquisition relative to the crop phenology was

minimised.

2. Methods and data

2.1. Study area and imagery

The study site is the 95,000 ha Coleambally Irrigation

Area (CIA), New South Wales, Australia (Fig. 1), where the

primary summer crop is irrigated rice. Rice uses the vast

majority of available water since it is both permanently

ponded between October and March and is planted on more

area than any other crop. The other major summer crops are

maize, sorghum and soybeans, which all use less water as

they are both intermittently furrow-irrigated and grown on

much less area. The CIA falls completely within the east–

west overlap of two ETM+ scenes, allowing for twice as

many image acquisitions, nominally, every 8 days. This

provided 17 cloud-free images during the southern hemi-

sphere summer growing season between October 2001 and

May 2002; see Table 1. The 17 images provided very good

coverage of the entire growing season. In every month except

December, at least 2 Fcloud-free_ images were acquired (Table

1). The mean acquisition interval was 13 days (SD=8.24

days) with a maximum interval of 32 days (twice in the

growing season). Using a Monte Carlo approach to combine

bands from the 17 images meant that the dense temporal

sampling reduced the dependence of subsequent results on

specific acquisition dates and allowed the general n-to-p

relationship to be assessed. For an in-depth review of remote

sensing of irrigated rice as well as the impact of the timing of

image acquisition at the site, see Van Niel and McVicar

(2004a,b), respectively.

2.2. Validation data

The validation data were acquired from 2 sources: (1)

digitised field boundaries from 1.5 m resolution aerial

photographs acquired in the 2000–2001 and 2001–2002

southern hemisphere summer growing seasons (used for per-

field classification); and (2) landholder surveys providing field-

level summer crop type data for 283 fields. Of these 283 fields,
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