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Abstract

The number of training samples per class (n) required for accurate Maximum Likelihood (ML) classification is known to be affected by the
number of bands (p) in the input image. However, the general rule which defines that » should be 10p to 30p is often enforced universally in
remote sensing without questioning its relevance to the complexity of the specific discrimination problem. Furthermore, identifying this many
training samples is often problematic when many classes and/or many bands are used. It is important, then, to test how this generally accepted rule
matches common remote sensing discrimination problems because it could be unnecessarily restrictive for many applications. This study was
primarily conducted in order to test whether the general rule defining the relationship between n and p was well-suited for ML classification of a
relatively simple remote sensing-based discrimination problem. To summarise the mean response of n-to-p for our study site, a Monte Carlo
procedure was used to randomly stack various numbers of bands into thousands of separate image combinations that were then classified using an
ML algorithm. The bands were randomly selected from a 119-band Enhanced Thematic Mapper-plus (ETM+) dataset comprised of 17 images
acquired during the 2001-2002 southern hemisphere summer agricultural growing season over an irrigation area in south-castern Australia.
Results showed that the number of training samples needed for accurate ML classification was much lower than the current widely accepted rule.
Due to the asymptotic nature of the relationship, we found that 95% of the accuracy attained using n= 30p samples could be achieved by using
approximately 2p to 4p samples, or < 1/7th the currently recommended value of 7. Our findings show that the number of training samples needed
for a simple discrimination problem is much less than that defined by the general rule and therefore the rule should not be universally enforced; the
number of training samples needed should also be determined by considering the complexity of the discrimination problem.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction referred to as the Hughes (1968) effect (Foody & Arora, 1997;

Pal & Mather, 2003). Peaking is caused by a poor estimation of

The ‘curse of dimensionality’ is the tendency for model
accuracy to initially increase as the number of variables (e.g.,
bands, p) used increases, but then reach a limit where accuracy
decreases—the point where the model is overfit (Hand, 1981;
Hughes, 1968; Pal & Mather, 2003). This phenomenon is
called ‘peaking’ in the pattern recognition literature (Jain &
Waller, 1978) and in the remote sensing literature has been
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the class probability density function (pdf) by the training data
(Hand, 1981). This poor estimation of the class pdf will
commonly occur in remote sensing classification when too
many bands are used with respect to training sample size (n). If
n is too small, the class pdf will not have enough precision to
accurately estimate the too complex feature space. This
phenomenon has been shown to affect the maximum likelihood
(ML) classifier (Pal & Mather, 2003) where the common
practice of modelling non-Gaussian remote sensing class pdf’s
with a single Gaussian distribution would exacerbate the issue.

In order to avoid peaking, it is common practice in remote
sensing to ensure that # be comprised of at least 10 to 30 times
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the number of discriminating wavebands (i.e., n=10p to 30p
Mather, 1999; Piper, 1987). Most likely this n-to-p relationship
was originally intended to be a ‘rule of thumb’, but for most,
has turned into a generic rule to be applied universally. This is
partly because this relationship is very often presented as a
definitive statement or rule without qualification (James, 1985;
Jensen, 1986; Mather, 1999; Piper, 1992; Pal & Mather, 2003).
As such, this heuristic rule is often enforced without question,
even though common sense dictates that the number of training
samples required to achieve optimal accuracy will ultimately
depend upon the discrimination problem, which in turn
depends upon the characteristics of the data, the site, and the
resultant classification level desired.

The spatial, spectral, and temporal characteristics of both the
phenomena being mapped and the data itself (in conjunction
with the quantization level of the data—Roderick et al., 1996)
certainly impact upon discrimination of classes (McVicar et al.,
2002; Woodcock & Strahler, 1987), and thus on n. Likewise,
the level of detail of the resultant classification (e.g., Anderson
level), although often related to both the data and site
characteristics, could also alter the relationship between n
and p. For example, with a given data source and a constant
number of bands, to achieve the same classification accuracy, a
species-level classification would be expected to require more
training samples than a growth form-level classification of the
same site. Likewise, a study site containing low within-class
variance and high between-class variance, like irrigated crops
with significantly different planting dates, might need less
training data than at a site where classes have high within-class
and low between-class variance, like many Eucalypt forests.

These data- and site-specific differences make it difficult to
draw generic conclusions suitable for all studies, where
different data sources, study sites, and classification levels
are employed. Also, very often, published studies combine
only a few images prior to classification (for an exception, see
Key et al., 2001), so the large number of images required to
describe the n-to-p relationship means that it is not usually
studied with remotely sensed data. That is why the fundamental
studies on the relationship between training sample size and
dimensionality for ML classification which are cited in the
remote sensing literature are based on chromosomal data
(Piper, 1987, 1992) and probability theory (Hughes, 1968)
instead of remote sensing data. The remote sensing-based
studies have either concentrated on artificial neural network
classification accuracy (Hepner, 1990; Foody et al., 1995;
Foody & Arora, 1997), or have not tested a large enough range
of n to achieve peaking in ML classification (Dobbertin &
Biging, 1996; Pal & Mather, 2003). Subsequently, the
relationship between n and p cannot be defined from these
remote sensing-based studies, but only partially inferred
(Dobbertin & Biging, 1996; Pal & Mather, 2003).

Because only part of the n-to-p relationship has been
observed in those studies (where accuracy continues to increase
with increasing p), it is also easily misinterpreted. Consequent-
ly, little is known about how the generally accepted rule
defining the ratio of n-to-p matches common remote sensing
discrimination problems. Does this general rule define the

minimum requirement needed for a relatively simple remote
sensing-based discrimination problem or does it define better
what is required for a relatively complex case? We suggest that
in the wide range of remotely sensed classification applica-
tions, this rule is unnecessarily restrictive for many discrimi-
nation problems that potentially would not need as many
training samples as n=10p to 30p to be accurately classified.
We test this hypothesis using broadband multi-temporal
classification in a Monte Carlo analysis of a dataset with high
temporal density (i.e., 17 ETM+ images in a single growing
season). We specifically aimed to determine if the general rule
defining that n= 10p to 30p was required for our relatively
simple discrimination problem. Due to the range of » and p
studied here, the current work provided a characterisation of
multi-temporal accuracy trends where the dependence on the
timing of image acquisition relative to the crop phenology was
minimised.

2. Methods and data
2.1. Study area and imagery

The study site is the 95,000 ha Coleambally Irrigation
Area (CIA), New South Wales, Australia (Fig. 1), where the
primary summer crop is irrigated rice. Rice uses the vast
majority of available water since it is both permanently
ponded between October and March and is planted on more
area than any other crop. The other major summer crops are
maize, sorghum and soybeans, which all use less water as
they are both intermittently furrow-irrigated and grown on
much less area. The CIA falls completely within the east—
west overlap of two ETM+ scenes, allowing for twice as
many image acquisitions, nominally, every 8§ days. This
provided 17 cloud-free images during the southern hemi-
sphere summer growing season between October 2001 and
May 2002; see Table 1. The 17 images provided very good
coverage of the entire growing season. In every month except
December, at least 2 ‘cloud-free’ images were acquired (Table
1). The mean acquisition interval was 13 days (SD=8.24
days) with a maximum interval of 32 days (twice in the
growing season). Using a Monte Carlo approach to combine
bands from the 17 images meant that the dense temporal
sampling reduced the dependence of subsequent results on
specific acquisition dates and allowed the general n-to-p
relationship to be assessed. For an in-depth review of remote
sensing of irrigated rice as well as the impact of the timing of
image acquisition at the site, see Van Niel and McVicar
(2004a,b), respectively.

2.2. Validation data

The validation data were acquired from 2 sources: (1)
digitised field boundaries from 1.5 m resolution aerial
photographs acquired in the 2000-2001 and 2001-2002
southern hemisphere summer growing seasons (used for per-
field classification); and (2) landholder surveys providing field-
level summer crop type data for 283 fields. Of these 283 fields,
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