Accepted Manuscript

Improved streamflow simulations by coupling Soil Moisture Analytical Relationship in EnKF based hydrological data assimilation framework

RAAJ Ramsankaran, Amol Patil

PII: S0309-1708(18)30113-1

DOI: https://doi.org/10.1016/j.advwatres.2018.08.010

Reference: ADWR 3183

To appear in: Advances in Water Resources

Received date: 9 February 2018
Revised date: 23 July 2018
Accepted date: 19 August 2018

Please cite this article as: RAAJ Ramsankaran, Amol Patil, Improved streamflow simulations by coupling Soil Moisture Analytical Relationship in EnKF based hydrological data assimilation framework, *Advances in Water Resources* (2018), doi: https://doi.org/10.1016/j.advwatres.2018.08.010

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Highlights 1

- Coupled SMAR model with EnKF to update root zone soil moisture for 2 improving streamflow.
 - Study involves both synthetic and real data experiments.
 - SMOS and ASCAT soil moisture retrievals are used for assimilation.
 - Proposed approach enhances the assimilation efficiency for streamflow simulations.
 - Streamflow simulations are improved but only to a moderate level.

9

3

4

5

6

7

8

10

11

12

Download English Version:

https://daneshyari.com/en/article/10117724

Download Persian Version:

https://daneshyari.com/article/10117724

<u>Daneshyari.com</u>