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A B S T R A C T

Multiple uncertainty sources directly cause inaccurate simulations for water related processes in complicated
integrated models, as such models include many interactive modules. A majority of existing studies focus on the
uncertainties of parameter and model structure, and their effects on the model performance for a single process
(e.g., hydrological cycle or water quality). However, comprehensive uncertainties of different modules and their
propagations are poorly understood, particularly for the integrated water system model. This study proposes a
framework of uncertainty and its propagation estimation for integrated water system model (HEQM) by coupling
the Bootstrap resampling method and SCE-UA auto-calibration technique. Parameter and structure uncertainties
of both hydrological cycle and water quality modules are estimated, including final distributions of parameters
and simulation uncertainty intervals. Additionally, the effect of uncertainty propagation of hydrological para-
meters is investigated. Results show that: (1) HEQM simulates daily hydrograph very well with the coefficient of
efficiency of 0.81, and also simulates the daily concentrations of ammonia nitrogen satisfactorily with the
coefficient of efficiency of 0.50 by auto-calibration in the case study area; (2) The final ranges of all interested
hydrological parameters are reduced obviously, and all the parameter distributions are well-defined and show
skew. The uncertainty intervals of runoff simulation at the 95% confidence level bracket 18.7% of all the runoff
observations due to uncertainties of parameter, and 86.0% due to both parameter and module structure, re-
spectively; (3) The uncertainty propagation of hydrological parameters changes the optimal values of 37.5% of
interested water quality parameters, but does not obviously change the water quality simulations which match
well with the prior simulations throughout the period and bracket only 1.7% of observations at the 95% con-
fidence level. Due to the further introduction of module structure uncertainties, 94.8% of observations are
bracketed, only except the extreme high and low water quality concentrations; (4) The uncertainty of water
quality parameters contributes 12.1% of total water quality simulations at the 95% confidence level. The figure
increases to 21.0% and 92.0% if the uncertainty propagation of hydrological parameters, structure uncertainties
of water quality module are considered, respectively. Therefore, although the parameter uncertainty and its
propagation contribute a certain proportion of the whole simulation uncertainties, the module structure itself is
the primary uncertainty source for the integrated water system model (HEQM), particular for the water quality
modules.

1. Introduction

Linkages, interconnections and interdependencies of water cycle
have been gradually recognized at basin or global scales due to the
rapid growth of environmental science and the constantly emerging
water issues (e.g., drought, flooding, erosion, pollution and ecological
degradation) (GWSP, 2005). Integrated consideration or simulation of
multiple water related processes become a new trend along with further

explorations of interaction mechanisms among multiple processes,
rapid developments of computer facilities and observation techniques
of multiple data sources (Paola et al., 2006; Zhang et al., 2016a,b).
Many successful model integrations have been implemented with dif-
ferent objectives in the earth system studies. For example, land surface
models (e.g., VIC-Variable Infiltration Capacity; Liang et al., 1994)
could be coupled with hydrological models to reveal interactions and
feedbacks between atmosphere and hydrology at large scale. Similarly,
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hydrological models (e.g., SWAT-Soil and Water Assessment Tool;
Arnold et al., 1998) could be coupled with soil erosion or biogeo-
chemical processes to reveal precipitation-induced losses of water, soil
and nutrient from lands to river networks. Hydrological models are also
able to be couple with hydrodynamic and water quality models of water
bodies (i.e., rivers or lakes) to capture the migrations of waterborne
variables with high spatial and temporal resolutions, such as EFDC
(Environmental Fluid Dynamic Code) (Hamrick, 1992). Ecosystem
models (EPIC- Erosion/Productivity Impact Calculator; Sharpley and
Williams, 1990; DNDC: DeNitrification/DeComposition; Li et al., 1992)
could also be coupled with evapotranspiration model and soil biogeo-
chemical model to reveal vegetation growth processes with considera-
tions of nutrient and water stresses. Furthermore, integrated water
system model is proposed and usually formed as a chain of water re-
lated modules to capture the interactions and feedbacks among phy-
sical, biological and geochemical processes, as well as the impacts of
water-related human activities (GWSP, 2005), such as CLM series
(Community Land Model) (Dai et al., 2003).

However, not all the processes are physically interpreted by math-
ematical equations due to the current insufficient knowledge (Willems,
2008). Empirical conceptualization and theoretical simplification are
usually adopted and are easy to introduce potential uncertainties of
parameters and model structures into the complicated models (Todini,
2007; Freni et al., 2009). For the integrated models that are made up of
many modules, multiple uncertainty sources of upstream modules are
transferred to the downstream modules as inputs (Freni et al., 2008).
Therefore, along with the increasing of coupled modules, multiple un-
certainty sources from different modules not only affect the simulation
performance of their own modules, but also might be accumulated and
propagated to subsequent modules and thus distort their performances
and even the whole model. For example, in the applications of in-
tegrated water quantity and quality models, water quality simulation
performance is not usually satisfying using the step-by-step calibration
approach even though the water quality modules are well formulated,
which is probably caused by the uncertainty or error propagation from
upstream modules (Zhang et al., 2016b). It is critical to investigate the
estimations of uncertainty sources of different modules and their pro-
pagation, as well as their effects on simulation performance.

Large majorities of studies are implemented to identify model un-
certainty sources, and assess their effects on model performance. The
identified uncertainty sources mainly include model parameter un-
certainty (Beven and Binley, 1992; Bates and Campbell, 2001; Beven
and Freer, 2001; Yang et al., 2007; Li et al., 2010a,b; Leta et al., 2015)
and model structure uncertainty (Beven and Binley, 1992; Refsgaard
et al., 2006; Li et al., 2010a). Most of the existing techniques are ca-
tegorized into two classes, i.e., (1) the frequentist approach with model
calibration techniques (e.g., Shuffled Complex Evolution: SCE-UA,
Particle Swarm Optimization: PSO) which is advantageous to be im-
plemented without timing consumption and the representative techni-
ques are GLUE procedure (Generalized Likelihood Uncertainty Esti-
mation) (Beven and Binley, 1992; Beven and Freer, 2001) and
Parameter Solution (Duan et al., 1992), both of which are based on
subjective determination of generalized likelihood measures between
simulations and observations, Sequential Uncertainty Fltting algorithm
(SUFI-2) with global sampling techniques based on multi-criteria
thresholds of model calibration (Abbaspour et al., 2007), and Bootstrap
resampling with recalibration (Li et al., 2010b; Novic et al., 2018); (2)
the classical Bayesian theorem with sampling techniques (e.g., Markov
Chain Monte Carlo, Latin hypercube) based on the observations and
prior information of model parameters (Bates and Campbell, 2001;
Engeland and Gottschalk, 2002; Montanari and Brath, 2004; Yang et al.,
2007), which is robust and widely used to estimate the reliable un-
certainties of model parameters. However, all of these studies are
model-specific (Engeland and Gottschalk, 2002; Gallagher and Doherty,
2007), and only focus on the inherent uncertainties of single process
model or model structure, e.g., hydrological models (Beven and Binley,

1992; Bates and Campbell, 2001; Engeland and Gottschalk, 2002;
Montanari and Brath, 2004; Li et al., 2010a,b; Shao et al., 2014;
Arsenault et al., 2015) and water quality models (Beck, 1987; Freni
et al., 2008; Jia et al., 2018; Novic et al., 2018). The comprehensive
uncertainty estimations in the integrated model of multiple processes
are still deficient.

Furthermore, most of existing studies about uncertainty propagation
analysis are limited to the impact assessments of observation quality on
model performances which are induced by potential errors from sam-
pling, instrument, laboratory, observation method or algorithm
(Harmel et al., 2006; Xu et al., 2006; Leta et al., 2015). The related
uncertainties include uncertainties associated with model inputs (e.g.,
climate variables, geographic information) (Crosetto et al., 2001;
Gabellani et al., 2007; Shao et al., 2012; Yen et al., 2014; Novic et al.,
2018) and observations used for the model calibration (e.g., flow re-
gime, water quality variables) (Harmel et al., 2006; Shao et al., 2014;
Yen et al., 2014). Both of two uncertainty sources are propagated and
probably distort the probability distributions of model parameters, and
thus disturb the capability of integrated models to portray the real
world, particularly for the simulations of subsequent modules. For ex-
ample, Harmel et al. (2006) examined that the probable uncertainties
for observed variables ranged from 6% to 19% for streamflow, from
11% to 100% for NH4-N, from 11% to 104% for total nitrogen (TN), and
from 8% to 110% for total phosphorous (TP), among which the con-
tributions of sample collection, preservation storage and laboratory
analysis were from 4% to 48%, from 2% to 16% and from 5% to 21%,
respectively. However, only a few studies are reported about the un-
certainty propagation investigation among different modules, particu-
larly for integrated water system models.

The main purpose of this study is to comprehensively assess the
uncertainties of multiple modules and their propagations among dif-
ferent modules for complicated integrated water system models. As a
typical integrated water system model, HEQM (Hydrological,
Ecological and water Quality Model) is adopted to investigate the effect
of multiple uncertainty sources on parameter distributions and simu-
lation performances of both hydrological and water quality modules.
The specific objectives are to: (1) propose a comprehensive assessment
of uncertainty sources and their propagations for HEQM by using
Bootstrap resampling with SCE-UA optimization technique; (2) estimate
the probability distributions of hydrological parameters and un-
certainty intervals of runoff simulation caused by uncertainties of
parameters and module structures; (3) estimate the probability dis-
tributions of water quality parameters and uncertainty intervals of
water quality simulation caused by parameter uncertainty propagation
of hydrological cycle module; (4) estimate the probability distributions
of water quality parameters and uncertainty intervals of water quality
simulation caused by uncertainties of parameter and module structure.
This study is expected to extend the scope of model uncertainty ana-
lysis, and assist modelers in further improvements and calibrations of
complicated integrated models of multiple processes.

2. Models and methodology

2.1. Integrated water system model (HEQM)

HEQM is an integrated water system model proposed by Zhang et al.
(2016a) in order to investigate hydrological cycle processes, its ac-
companied biogeochemical and water quality processes as well as their
interactions at catchment scale. The main water related processes are
mathematically described by hydrological cycle module (HCM), soil
erosion module (SEM), overland water quality module (OQM), water
quality module in water bodies (WQM), crop growth module (CGM),
soil biochemical module (SBM) and dams regulation module (DRM)
(Fig. S1 in the Supplementary material). Furthermore, a parameter
analysis tool (PAT) is provided to conveniently conduct the parameter
sensitivity analysis, model calibration and performance assessment. All
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