Finding roots of a multivariate polynomial in a linear subspace

Ming-Deh A. Huang
Computer Science Department, University of Southern California, USA

A R T I C L E I N F O

Article history:

Received 21 June 2017
Accepted 14 August 2018
Available online xxxx
Communicated by Gary L. Mullen

$M S C$:
 13 P 10

13P15

A B S T R A C T

Suppose F is a polynomial of total degree d in t variables over a finite field $k=\mathbb{F}_{q^{n}}$. We are interested in finding roots of F that lie in a \mathbb{F}_{q}-linear subspace of k^{t}. For $m \leq n$, we characterize a large class of m-dimensional \mathbb{F}_{q}-subspaces U of k^{t} such that the set of roots of F that lie in U can be bounded by d^{m} in cardinality, independent of q, and constructed in expected time polynomial in n, t and d^{m}.
© 2018 Elsevier Inc. All rights reserved.

Keywords:
Polynomial system
Zero-dimensional
Weil descent

1. Introduction

Let k be a field and let \mathcal{F} be a finite set of polynomials in $k\left[x_{1}, \ldots, x_{t}\right]$. The algebraic set $V_{\bar{k}}(\mathcal{F})$ consists of $\left(\alpha_{1}, \ldots, \alpha_{t}\right) \in \bar{k}^{t}$ such that $f\left(\alpha_{1}, \ldots, \alpha_{t}\right)=0$ for all $f \in \mathcal{F}$, where \bar{k} denotes the algebraic closure of k. If \mathcal{F} has only one polynomial F, we simply write $V_{\bar{k}}(F)$ for $V_{\bar{k}}(\mathcal{F})$.

Let $F \in k\left[x_{1}, \ldots, x_{t}\right]$ where $k=\mathbb{F}_{q^{n}}$ is a finite field. We are interested in finding the roots of F which lie in a \mathbb{F}_{q}-linear subspace of k^{t}. In this paper, we characterize a large

[^0]class of $\mathbb{F}_{q^{-}}$-linear subspaces U of k^{t} such that $\left|V_{\bar{k}}(F) \cap U\right|$ can be bounded in terms of the degree of F and the dimension of U, independent of q.

Throughout the paper we fix a \mathbb{F}_{q}-linear basis $\theta_{1}, \ldots, \theta_{n}$ of $k=\mathbb{F}_{q^{n}}$. With respect to the basis, $k=\mathbb{F}_{q^{n}}$ and \mathbb{F}_{q}^{n} are isomorphic as \mathbb{F}_{q}-linear spaces. Similarly, we have an isomorphism between k^{t} and $\mathbb{F}_{q}^{t n}$ as \mathbb{F}_{q}-linear spaces, under which $\left(x_{i}\right)_{i=1}^{t} \in k^{t}$ is identified with $\left(y_{i j}\right)_{\substack{i=1, \ldots, t \\ j=1, \ldots, n}} \in \mathbb{F}_{q}^{t n}$, where $x_{i}=\sum_{j=1}^{n} y_{i j} \theta_{j}$ with $y_{i j} \in \mathbb{F}_{q}$.

To illustrate the problem and our approach consider the case where F is linear, and we look for solutions of F in an m-dimensional \mathbb{F}_{q}-linear subspace U of k^{t}. Substituting x_{i} using the identity $x_{i}=\sum_{j=1}^{n} y_{i j} \theta_{j}$, we get $F\left(x_{1}, \ldots, x_{t}\right)=\sum_{i=1}^{n} F_{i} \theta_{i}$ where F_{i} is a linear polynomial in the $n t$ variables $y_{i j}$. Observe that $x_{i} \in \mathbb{F}_{q^{n}}$ if and only if $y_{i j} \in \mathbb{F}_{q}$
 \mathbb{F}_{q}-solution to the system of polynomials F_{1}, \ldots, F_{n} in $n t$ variables.

The subspace U can be expressed as the image of an \mathbb{F}_{q}-linear map $\lambda=\left(\lambda_{i j}\right)_{\substack{i=1, \ldots, t \\ j=1, \ldots, n}}^{\substack{\text { n }}}$ from \mathbb{F}_{q}^{m} to $\mathbb{F}_{q}^{n t}$ where each $\lambda_{i j}$ is an \mathbb{F}_{q}-linear function in m variables z_{1}, \ldots, z_{m}.

For $i=1, \ldots, n$, let G_{i} be the linear polynomials obtained from F_{i} by substituting $y_{i j}$ using the identity $y_{i j}=\lambda_{i j}\left(z_{1}, \ldots, z_{m}\right)$. Then the solutions we are looking for is the set of \mathbb{F}_{q}-solutions to the system of n linear polynomials $G_{1}, \ldots, G_{n} \in \mathbb{F}_{q}\left[z_{1}, \ldots, z_{m}\right]$.

If $n<m$, the rank of the linear system determined by G_{1}, \ldots, G_{n} is at most n, so there are at least q^{m-n} solutions from U. If $n \geq m$ and U is chosen at random, then heuristically the linear system is likely of rank m, in which case there is at most one solution. It will follow as a special case of our main result that for a random choice of U in a large collection of subspaces of dimension $m \leq n$ this is indeed the case.

In general when the degree of F is bounded by d, we show that the number of solutions that lie a subspace of dimension $m \leq n$ is typically bounded by d^{m}.

To state our main result precisely, we need to introduce some notation.
As before we fix a $\mathbb{F}_{q^{-}}$-linear basis $\theta_{1}, \ldots, \theta_{n}$ of $k=\mathbb{F}_{q^{n}}$, and with respect to the basis an isomorphism between k^{t} and $\mathbb{F}_{q}^{t n}$ as \mathbb{F}_{q}-linear spaces so that $\left(x_{i}\right)_{i=1}^{t} \in k^{t}$ is identified with $\left(y_{i j}\right)_{\substack{i=1, \ldots, t \\ j=1, \ldots, n}} \in \mathbb{F}_{q}^{t n}$, where $x_{i}=\sum_{j=1}^{n} y_{i j} \theta_{j}$ with $y_{i j} \in \mathbb{F}_{q}$.

We fix an ordering of the set of indices $\Delta=\{(i, j): i=1, \ldots, t ; j=1, \ldots, n\}$. Let $\omega_{1}, \ldots, \omega_{t n}$ be the enumeration of the elements of Δ under the ordering.

In general a linear map from \mathbb{F}_{q}^{m} to \mathbb{F}_{q} sends $z=\left(z_{1}, \ldots, z_{m}\right) \in \mathbb{F}_{q}^{m}$ to $\sum_{i=1}^{m} a_{i} z_{i} \in \mathbb{F}_{q}$ where $a_{i} \in \mathbb{F}_{q}$ for $i=1, \ldots, m$. A linear map λ from \mathbb{F}_{q}^{m} to $k^{t} \cong \mathbb{F}_{q}^{t n}$ can be defined by tn linear maps $\lambda_{\omega_{i}}$ from \mathbb{F}_{q}^{m} to \mathbb{F}_{q}, for $i=1, \ldots, t n$. Thus, $\lambda(z)=\left(y_{\omega_{i}}\right)_{i=1}^{t n}$ where $y_{\omega_{i}}=\lambda_{\omega_{i}}(z)$ for $i=1, \ldots, t n$, and we write $\lambda=\left(\lambda_{\omega_{i}}\right)_{i=1}^{t n}$.

We will restrict our attention to those λ such that $\lambda_{\omega_{i}}(z)=z_{i}$ for $i=1, \ldots, m$. Let Λ_{m} denote the collection of such \mathbb{F}_{q}-linear maps.

We note that the image of $\lambda \in \Lambda_{m}$ is an m-dimensional \mathbb{F}_{q}-subspace of $k^{t} \cong \mathbb{F}_{q}^{t n}$ consisting of $\left(y_{\omega_{i}}\right)_{i=1}^{t n}$ where

$$
y_{\omega_{i}}=\lambda_{\omega_{i}}\left(y_{\omega_{1}}, \ldots, y_{\omega_{m}}\right)
$$

for $i=m+1, \ldots, t n$.

https://daneshyari.com/en/article/10118274

Download Persian Version:
https://daneshyari.com/article/10118274

Daneshyari.com

[^0]: E-mail address: mdhuang@usc.edu.

