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a b s t r a c t 

In this paper we focus on two sources of enhancement in accuracy and computational de- 

manding in approximating a function and its derivatives by means of the Smoothed Parti- 

cle Hydrodynamics method. The approximating power of the standard method is perceived 

to be poor and improvements can be gained making use of the Taylor series expansion of 

the kernel approximation of the function and its derivatives. The modified formulation is 

appealing providing more accurate results of the function and its derivatives simultane- 

ously without changing the kernel function adopted in the computation. The request for 

greater accuracy needs kernel function derivatives with order up to the desidered accu- 

racy order in approximating the function or higher for the derivatives. In this paper we 

discuss on the scheme dealing with the infinitely differentiable Gaussian kernel function. 

Studies on the accuracy, convergency and computational efforts with various sets of data 

sites are provided. Moreover, to make large scale problems tractable the improved fast 

Gaussian transform is considered picking up the computational cost at an acceptable level 

preserving the accuracy of the computation. 

© 2018 Elsevier Inc. All rights reserved. 

1. Introduction 

In recent years, meshless methods have gained growing interest in many different areas of science [2,4,8,9,21,39] . The 

basic idea of these methods is to provide numerical solutions without using any mesh in the problem domain. Methods 

without a predefinite connections are easily adapted to domains with complex and/or time evolving geometries without 

the difficulties that would be required to handle those features with topological data structures. They can be useful in non- 

linear problems involving viscous fluids, heat and mass transfer, linear and non-linear elastic or plastic deformations, etc. 

In the Lagrangian approach the points, describing the problem domain, move with the medium, and points may be added 

or deleted in order to maintain a prescribed sampling density. In the Eulerian approach the points are fixed in space, but 

new points may be added where there is need for increased accuracy. So, in both approaches the nearest neighbors of a 

point are not set. Numerical simulations usually need the values of a function and its derivatives at certain point and in this 

paper we focus on their approximation by means of the Smoothed Particle Hydrodynamics (SPH) method. This method was 

originally developed for solving astrophysical problems [16,17,29–33] and subsequently it has been also used in other areas 

of science and engineering [1,3,5,12–14,22–24,26,33,36,37,41] . The method results very attractive but it suffers from several 

drawbacks due to inaccurate approximation at boundaries and at irregular interior regions. This often confines its utility to 

limited scenarios. Many techniques have been devised to alleviate these problems and some of these have been documented 
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in [6,25,27,28] and in the references therein. In this paper we discuss on sources of enhancement in accuracy of the standard 

SPH method via Taylor expansion of the kernel approximation of a function and its derivatives [27] . In this way, accurate 

estimates of the function and its derivatives are simultaneously provided and no lower order derivatives are inherent in 

approximating the higher order derivatives. Therefore, the possible numerical errors in a lower order derivative will not be 

brought to the higher order ones. Moreover, high order of accuracy can be obtained without changes on the kernel function 

avoiding to lead unphysical results such as negative density or negative energy that can lead to breakdown of the entire 

computation in simulating some problems [23] . Accuracy can be increased in approximating a function or its derivatives 

by employing kernel function derivatives with order up to the desidered accuracy order in approximating the function or 

higher when more accurate results for the derivatives of the function are requested.So the Gaussian kernel function, in- 

finitely differentiable and adequately smooth even for higher order derivatives is a suitable choice. In our study we propose 

numerical investigations on the standard and improved method dealing with the Gaussian kernel. Many experiments are 

conducted with the aim to address numerical features of the method accomplished with various data sets locations, gridded 

and scattered in a unit square domain, referring to bivariate test functions [35,40] . The modified approach is very interesting 

for the applications, but the computational demanding is a bottleneck as data locations get finer and for an high number 

of evaluation points. The computational effort is mainly due to the summations of kernel and its derivatives in assembling 

the matrix of the solving system for each evaluation point. Motivated to speed up the computation and to make large scale 

problems tractable we focus on efficient processing of this task. Working with Gaussian kernel, the derivatives involve sums 

of products of the polynomials and Gaussian one. This allows us to take advantage in the computation and to make use 

of fast algorithms [19] for all the summations set out for the proposed strategy. Namely, we consider the improved fast 

Gaussian transform [34] picking up the computational cost at an acceptable level preserving the accuracy of the computa- 

tion. Furthermore, the matrix and the known vector assembly is generated by taking into account the Gaussian function as 

common element in the fundamental tasks. The overall computational work performs to linear for a fixed level of accuracy. 

We present the computations with the direct and the improved fast summation algorithm showing satisfactory results re- 

ferring to a bivariate case study. The remainder of the paper is as follows. In Section 2 we present a review of the standard 

formulation. In Section 3 we describe the improved method supported by numerical simulations for some test functions 

in a unit square domain. In this section some discussions on the errors versus the number of data are reported referring 

to different orders of accuracy and with different data sets. The Section 4 is devoted to computational topics presenting 

the direct and the fast sum computation via Improved Fast Transform Gaussian adapted for our purposes. In Section 5 the 

results presented in the paper are shortly summarized. 

2. Ab initio formulation 

To make the paper self-contained we briefly review the SPH standard formalism from first principles. The method makes 

use of a kernel approximation using ideas from distribution theory for approximating a function with a delta distribution 

representation [15] . 

Definition 1. Let f : � ⊂ R 

d → R , d ≥ 1, the kernel approximation is defined as 

< f h (x ) > := 

∫ 
�

f ( ξ) K (x , ξ; h ) d� (1) 

with x = (x (1) , . . . , x (d) ) , ξ = (ξ (1) , . . . , ξ (d) ) ∈ �. 

The function K (x , ξ; h ) is named kernel function and h is the smoothing length . The parameter h localizes the influence of 

the kernel function which approximates a Dirac δ-function in the limit h → 0. The kernel is usually normalized to unity and 

it is required to be symmetric and sufficiently smooth. Under these assumptions the error of the kernel approximation can 

be estimated as second order of accuracy, or of first order of consistency [16,17,23] . Any function K (x , ξ ; h ) with the above 

properties can be employed as smoothing kernel function. A common choice is the Gaussian function 

K (x , ξ; h ) = 

1 

h 

d 
√ 

π d 
e 

− ‖ ξ−x ‖ 2 
2 

h 2 . (2) 

The kernel (2) clearly decays when x moves away from ξ and the dimensional constant αd = 1 / h d 
√ 

πd is to satisfy the 

unity condition requirement [23] . Moreover, it is infinitely differentiable, radial and strictly positive definite function on R 

d 

for any d [7,10,11,42] . This function will be taken into consideration as kernel from now on. 

When the entire domain is represented by a finite number of data sites we proceed in the approximation as follows 

Definition 2. Given a set of data sites � = 

{
ξ j 

}N 

j=1 
⊂ � and the corresponding measurements 

{
y j = f ( ξ j ) 

}N 

j=1 
∈ R the par- 

ticle approximation of the function is defined as 

f h (x ) := 

N ∑ 

j=1 

f ( ξ j ) K (x , ξ j ; h ) d� j , (3) 

where d �j is the measure of the subdomain �j associated to each data site. 

The triple ( K , �, h ) essentially characterizes the approximation. 
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