Contents lists available at ScienceDirect

Discrete Mathematics

journal homepage: www.elsevier.com/locate/disc

The main results provide sufficient conditions for balanced bipartite digraphs to be bipan-

cyclic. These are analogues to well-known results on pancyclic digraphs.

New sufficient conditions for bipancyclicity of balanced bipartite digraphs

Mariusz Meszka

AGH University of Science and Technology, Kraków, Poland

ARTICLE INFO

ABSTRACT

Article history: Received 7 February 2017 Received in revised form 13 December 2017 Accepted 3 August 2018

Keywords: Bipartite digraph Balanced Hamiltonian Pancyclic Bipancyclic

1. Introduction

We use standard notation and terminology, cf. [3]. Let D = (V, A) be a digraph with the vertex set V and the arc set A. If (u, v) is an arc in D, u is called a *tail* and v a *head*. A *degree* of a vertex v in D is the number of arcs incident to v and is denoted $d_D(v)$. Symbols $d_D^+(v)$ and $d_D^-(v)$ denote *out-degree* and *in-degree* of a vertex v in D which are the numbers of arcs with tail and head in v, respectively.

Two vertices u and v are adjacent if $(u, v) \in A$ or $(v, u) \in A$. A digraph D is called a *tournament* if every two distinct vertices u and v are adjacent by a single arc, i.e., either $(u, v) \in A$ or $(v, u) \in A$. A *directed path* of length k in D is a sequence $P = \langle v_1, v_2, \ldots, v_{k+1} \rangle$ of pairwise distinct vertices in D such that, for each $1 \leq i \leq k$, (v_i, v_{i+1}) is an arc in D. If an arc (v_{k+1}, v_1) is attached to P then we get a *directed cycle* of length k + 1. A vertex v is *reachable* from a vertex u in D if there exists a directed path from u to v. In particular, v is reachable from itself. A digraph D is *strongly connected* if, for every two vertices u and v, v is reachable from u and u is reachable from v. A digraph D of order n is *hamiltonian* if it has a directed cycle of length n. D is *pancyclic* if it contains directed cycles of all lengths $2, 3, \ldots, n$.

A bipartite digraph D = (X, Y; A) has the vertex set partitioned into two partite sets X and Y of cardinalities a and b, respectively, where A denotes the set of arcs; each arc has one vertex in X and the other in Y. If a = b then D is called balanced. $K_{a,b}^*$ denotes a complete bipartite digraph with partite sets of cardinalities a and b. A matching M from X to Y is a set of arcs such that any vertex in $X \cup Y$ is incident with at most one arc in A and moreover each arc in M has its tail in X and a head in Y; M is perfect if each vertex has incident arc in M. A balanced bipartite digraph D of order 2a is bipancyclic if it contains directed cycles of all even lengths 2, 4, ..., 2a.

Thomassen [7] proved an Ore-type sufficient condition for pancyclicity of digraphs.

Theorem 1 ([7]). Let D be a strongly connected digraph of order $n \ge 3$ such that $d_D(u) + d_D(v) \ge 2n$ whenever u and v are nonadjacent. Then either D is pancyclic, or D is a tournament, or else n is even and D is isomorphic to $K_{\frac{n}{2},\frac{n}{2}}^*$.

© 2018 Elsevier B.V. All rights reserved.

E-mail address: meszka@agh.edu.pl.

https://doi.org/10.1016/j.disc.2018.08.004 0012-365X/© 2018 Elsevier B.V. All rights reserved.

An analogous assertion holds if a digraph satisfies the Woodall's condition.

Corollary 2 ([7]). Let D be a digraph of order $n \ge 3$. If $d_D^+(u) + d_D^-(v) \ge n$ for each pair of vertices u and v such that there is no arc from u to v, then either D is pancyclic or else n is even and D is isomorphic to $K_{\underline{n}}^*$.

Adamus and Adamus [1] proved a sharp Ore-type condition for hamiltonicity in balanced bipartite digraphs.

Theorem 3 ([1]). Let D = (X, Y; A) be a balanced bipartite digraph such that $|X| = |Y| = a \ge 2$. If $d_D^+(u) + d_D^-(v) \ge a + 2$ for each two vertices u and v from distinct partite sets such that $(u, v) \notin A$, then D is hamiltonian.

Moreover, Adamus, Adamus and Yeo [2] proved a sharp Meyniel-type condition for hamiltonicity in balanced bipartite digraphs.

Theorem 4 ([2]). Let D = (X, Y; A) be a balanced bipartite digraph such that $|X| = |Y| = a \ge 2$. Then D is hamiltonian provided one of the following holds:

(a) $d_D(u) + d_D(v) \ge 3a + 1$ for each pair of nonadjacent vertices $u, v \in X \cup Y$,

(b) *D* is strongly connected and $d_D(u) + d_D(v) \ge 3a$ for each pair of nonadjacent vertices $u, v \in X \cup Y$.

The main results of the paper improve the above assertions. In particular, the assumptions in Theorem 3 turn out to be sufficient for bipancyclicity.

Theorem 5. Let D = (X, Y; A) be a balanced bipartite digraph, $|X| = |Y| = a \ge 2$. If $d_D^+(u) + d_D^-(v) \ge a + 2$ for each pair of vertices u and v from distinct partite sets such that $(u, v) \notin A$, then D is bipancyclic.

Weaker conditions than those in Theorem 4(a) guarantee stronger assertion.

Theorem 6. Let D = (X, Y; A) be a balanced bipartite digraph, $|X| = |Y| = a \ge 2$, and moreover $d_D(u) + d_D(v) \ge 3a + 1$ for each two vertices u, v either both in X or both in Y. Then D is bipancyclic.

2. Proofs

A bipartite graph G = (X, Y; E) is called a *half-base* of D = (X, Y; A) if it has the same bipartition (X, Y) of vertices and each edge $\{x, y\} \in E$ is obtained from an arc $(x, y) \in (X, Y)$ in D by ignoring its direction; arcs in (Y, X) are disregard. Moon and Moser [6] provided well-known sufficient condition for a balanced bipartite graph to be hamiltonian.

Theorem 7 ([6]). If G = (X, Y, E) is a balanced bipartite graph, where |X| = |Y| = a, in which $d_G(x) + d_G(y) > a$ for every pair of nonadjacent vertices $x \in X$ and $y \in Y$, then G is hamiltonian.

Ferrara, Jacobson and Powell [4] characterized all nonhamiltonian balanced bipartite graphs *G* such that min{ $d_G(x) + d_G(y)$: {x, y} $\notin E, x \in X, y \in Y$ } = a. Namely, *G* is either one of two graphs on 8 vertices or *G* belongs to a given infinite class of graphs. It is immediate to verify that all these graphs contain perfect matchings.

Corollary 8. If G = (X, Y, E) is a balanced bipartite graph, |X| = |Y| = a, and $d_G(x) + d_G(y) \ge a$ for every pair of nonadjacent vertices $x \in X$ and $y \in Y$, then G contains a perfect matching. \Box

An easy consequence of the above results guarantees the existence of perfect matchings in balanced bipartite digraphs under slightly weaker assumptions than those in Theorem 5.

Lemma 9. Let D = (X, Y; A) be a balanced bipartite digraph, |X| = |Y| = a. If $d_D^+(x) + d_D^-(y) \ge a$ for each pair of vertices $x \in X$ and $y \in Y$ such that $(x, y) \notin A$, then D contains a perfect matching from X to Y.

Proof. Let G = (X, Y; E) be a half-base of D = (X, Y; A). Obviously, $x \in X$ and $y \in Y$ are nonadjacent vertices in G if $(x, y) \notin A$. Therefore $d_G(x) + d_G(y) = d_D^+(x) + d_D^-(y) \ge a$. By Corollary 8, G has a perfect matching M'. Each edge $\{x, y\}$ of M' determines an arc (x, y) of M in D. \Box

Suppose that D = (X, Y; A) is a balanced bipartite digraph of order 2*a* and moreover *D* contains a perfect matching *M* from *Y* to *X* which consists of the arcs (y_i, x_i) , i = 1, 2, ..., a. Then, for purpose of the next proofs, we may define a digraph $D^*(M) = (V^*, A^*)$ of order *a* such that each vertex $v_i \in V^*$ corresponds to a pair $\{x_i, y_i\}$ of vertices in *D*, i = 1, 2, ..., a. For each $i \neq j$, $(v_i, v_j) \in A^*$ if and only if $(x_i, y_j) \in A$; when constructing $D^*(M)$ all arcs from *Y* to *X* and those of type (x_i, y_i) are ignored. The following property of $D^*(M)$ can be easily observed.

Lemma 10. If a digraph $D^*(M)$ contains a directed cycle of length k then there is a directed cycle of length 2k in D = (X, Y; A).

Download English Version:

https://daneshyari.com/en/article/10118303

Download Persian Version:

https://daneshyari.com/article/10118303

Daneshyari.com