

Available online at www.sciencedirect.com

European Journal of Combinatorics

European Journal of Combinatorics 26 (2005) 1191-1206

www.elsevier.com/locate/ejc

De Bruijn digraphs and affine transformations*

Aiping Deng^a, Yaokun Wu^{a,b}

^aDepartment of Mathematics, Shanghai Jiao Tong University, Shanghai, 200240, China ^bCollege of Advanced Science and Technology, Dalian University of Technology, Dalian, 116024, China

Received 22 July 2003; received in revised form 15 June 2004; accepted 30 June 2004 Available online 7 August 2004

Abstract

Let \mathbb{Z}_d^n be the additive group of $1 \times n$ row vectors over \mathbb{Z}_d . For an $n \times n$ matrix T over \mathbb{Z}_d and $\omega \in \mathbb{Z}_d^n$, the affine transformation $F_{T,\omega}$ of \mathbb{Z}_d^n sends x to $xT + \omega$. Let $\langle \alpha \rangle$ be the cyclic group generated by a vector $\alpha \in \mathbb{Z}_d^n$. The affine transformation coset pseudo-digraph $TCP(\mathbb{Z}_d^n, \alpha, F_{T,\omega})$ has the set of cosets of $\langle \alpha \rangle$ in \mathbb{Z}_d^n as vertices and there are c arcs from $x + \langle \alpha \rangle$ to $y + \langle \alpha \rangle$ if and only if the number of $z \in x + \langle \alpha \rangle$ such that $F_{T,\omega}(z) \in y + \langle \alpha \rangle$ is c. We prove that the following statements are equivalent: (a) $TCP(\mathbb{Z}_d^n, \alpha, F_{T,\omega})$ is isomorphic to the d-nary (n-1)-dimensional De Bruijn digraph; (b) α is a cyclic vector for T; (c) $TCP(\mathbb{Z}_d^n, \alpha, F_{T,\omega})$ is primitive. This strengthens a result conjectured by C.M. Fiduccia and E.M. Jacobson [Universal multistage networks via linear permutations, in: Proceedings of the 1991 ACM/IEEE Conference on Supercomputing, ACM Press, New York, 1991, pp. 380–389]. Under the further assumption that T is invertible we show that each component of $TCP(\mathbb{Z}_d^n, \alpha, F_{T,\omega})$ is a conjunction of a cycle and a De Bruijn digraph, namely a generalized wrapped butterfly. Finally, we discuss the affine TCP digraph representations for a class of digraphs introduced by D. Coudert, A. Ferreira and S. Perennes [Isomorphisms of the De Bruijn digraph and free-space optical networks, Networks 40 (2002) 155–164].

© 2004 Elsevier Ltd. All rights reserved.

Keywords: Affine transformation; De Bruijn digraph; Wrapped butterfly; Transformation coset pseudo-digraph

This work is supported by the NNSFC grant 10301021. E-mail address: ykwu@sjtu.edu.cn (Y. Wu).

1. Introduction

This paper is about an interesting phenomenon, namely sometimes some digraphs arising from seemingly very general algebraic constructions or those restricted by a simple algebraic requirement turn out to be of a very regular pattern and have close connection with a family of seemingly very special digraphs, the so-called De Bruijn digraphs [2]. Perhaps we should call this special type of digraphs universal digraphs as they already appear in a wide range of research [1–22]. In this sense, our work here will confirm the assertion that the mysterious De Bruijn digraphs are really universal. Let us postpone a more accurate description of the phenomenon referred to above to the end of this section and review first some preliminary definitions to be used in this paper.

As usual, \mathbb{Z}_d denotes the ring of integers modulo d and \mathbb{Z}_d^n represents the set of $1 \times n$ matrices over \mathbb{Z}_d . \mathbb{Z}_d^n can be viewed as the n-dimensional free module over \mathbb{Z}_d and has a standard basis $\{e_0, e_1, \ldots, e_{n-1}\}$, where e_i is the vector with a single 1 in the (i+1)th position and 0's elsewhere. A subset $\{\alpha_1, \ldots, \alpha_t\}$ of \mathbb{Z}_d^n is called *linearly independent* over \mathbb{Z}_d^n if and only if whenever $\sum_{i=1}^t k_i \alpha_i = 0$ with $k_i \in \mathbb{Z}_d$, then $k_1 = k_2 = \cdots = k_t = 0$.

Let $Mat_n(\mathbb{Z}_d)$ be the set of all $n \times n$ matrices over \mathbb{Z}_d . The set of invertible matrices in $Mat_n(\mathbb{Z}_d)$ is denoted $GL_n(\mathbb{Z}_d)$. Arbitrarily picking $T \in Mat_n(\mathbb{Z}_d)$ and $\omega \in \mathbb{Z}_d^n$, the affine transformation $F_{T,\omega}$ on \mathbb{Z}_d^n is defined by $F_{T,\omega}(x) = xT + \omega, \forall x \in \mathbb{Z}_d^n$. For $i = 0, 1, \ldots, n-1$, let $T(i, \cdot) = e_i T$ and $T(\cdot, i) = Te_i^{\top}$, respectively.

For $S \subseteq \mathbb{Z}_d^n$, the submodule generated (or spanned) by S is $\langle S \rangle \doteq \{\sum_{i=1}^m c_i s_i : c_i \in \mathbb{Z}_d, s_i \in S, m \geq 0\}$. If a submodule M is spanned by a set S, we call S a generating set of M. For any nonzero vector $\alpha \in \mathbb{Z}_d^n$ and $T \in Mat_n(\mathbb{Z}_d)$, the T-cyclic submodule generated by α is the submodule $\mathbb{Z}_d(\alpha; T) \doteq \langle \{\alpha T^k, k \geq 0\} \rangle$. A vector α is a cyclic vector for T provided $\mathbb{Z}_d(\alpha; T) = \mathbb{Z}_d^n$. For any finite set S, #S denotes its cardinality.

Let Γ be a digraph. The vertex set and the arc set of Γ are denoted by $V(\Gamma)$ and $E(\Gamma)$, respectively. For a subset V_0 of $V(\Gamma)$, we write $N_{\Gamma}(V_0)$ for the out-neighbor set of V_0 , which is $\{w \in V(\Gamma) : \exists u \in V_0, e \in E(\Gamma), e \text{ starts from } u \text{ and ends at } w\}$. We let $N_{\Gamma}^0(V_0) = V_0$ and define inductively that $N_{\Gamma}^k(V_0) = N_{\Gamma}(N_{\Gamma}^{k-1}(V_0))$ for any positive integer k. A digraph Γ is strongly connected if for any two vertices κ and κ of κ , there always exists in κ a path from κ to κ . We say that a digraph is connected if its underlying undirected graph is connected. The components of a digraph refer to its connected components. A digraph κ is said to be balanced if the in-degree and out-degree of each of its vertices are equal. We write κ is a denote that κ and κ are isomorphic digraphs. If κ is think of them as different representations of the same object and thus often do not distinguish between them.

Given an $\alpha \in \mathbb{Z}_d^n$ and a transformation F on \mathbb{Z}_d^n , the *transformation coset pseudo-digraph* (TCP digraph, for short) of \mathbb{Z}_d^n with respect to them, denoted $TCP(\mathbb{Z}_d^n, \alpha, F)$, is the digraph whose vertex set is $\mathbb{Z}_d^n/\langle \alpha \rangle$ and the number of arcs from vertex $x + \langle \alpha \rangle$ to vertex $\#\{z \in x + \langle \alpha \rangle: F(z) \in y + \langle \alpha \rangle\}$. Let S be a union of several cosets of $\langle \alpha \rangle$ in \mathbb{Z}_d^n . If there are no arcs between $S/\langle \alpha \rangle$ and $(\mathbb{Z}_d^n - S)/\langle \alpha \rangle$ in $TCP(\mathbb{Z}_d^n, \alpha, F)$, then we use the notation $TCP(S, \alpha, F)$ to represent the subdigraph induced by the vertex set $S/\langle \alpha \rangle$, which is a TCP digraph on S.

The conjunction $\Gamma_1 \otimes \Gamma_2$ of two digraphs Γ_1 and Γ_2 has $V(\Gamma_1) \times V(\Gamma_2)$ as the vertex set and $E(\Gamma_1 \otimes \Gamma_2)$ has $(x_1, x_2)(y_1, y_2)$ as an element of multiplicity m_1m_2 , where m_i

Download English Version:

https://daneshyari.com/en/article/10118318

Download Persian Version:

https://daneshyari.com/article/10118318

<u>Daneshyari.com</u>