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Abstract

A lattice diagram is a finite listL = ((p1, q1), . . . , (pn, qn)) of lattice cells. The corresponding
lattice diagram determinant is∆L (X; Y) = det‖x

pj
i y

qj
i ‖. ThespaceML is the space spanned by all

partial derivatives of∆L(X; Y). We describe here how a Schur function partial derivative operator
acts on lattice diagrams with distinct cells in the positive quadrant.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the symmetric groupSn acting diagonally onQ[x1, x2, . . . , xn; y1, y2, . . . ,

yn], the polynomial ring in 2n variables.More specifically, forσ ∈ Sn, we considerthe
following (diagonal) action on polynomials:

σ P(x1, x2, . . . , xn; y1, y2, . . . , yn) = P(xσ1, xσ2, . . . , xσn; yσ1, yσ2, . . . , yσn).

A polynomial∆ = ∆(x1, x2, . . . , xn; y1, y2, . . . , yn) is said to bealternating if, for all
σ ∈ Sn, we haveσ∆ = sign(σ )∆. It is well known that the set of all lattice diagram
determinants (described in the next section) forms a basis for the space of alternating
polynomials.

Given an alternating polynomial∆ we are interested in the spaceL∂ [∆] spanned by all
possible partial derivatives of∆. Since the diagonal action ofSn commutes with applying
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partial derivatives, the spaceL∂ [∆] is an Sn-module. Our goal is to give a complete
description of its (graded) character. This is a very hard problem in general and even the
simplest cases require elaborate constructions [4,6,7]. The aim ofthe present work is to
develop tools that will allow us to better achieve this goal.

In previous work [1–4] we remark that the first step in describing the structure ofL∂ [∆]
is to determine its subspace of alternating polynomials. This subspace corresponds to the
space spanned by allsymmetricpartial derivativeoperators applied to∆. In view of this, we
need to describe explicitly how the different bases of symmetric partial derivative operators
act on a given lattice diagram determinant. In the work cited above, we describe the action
of power sum symmetric operators and elementary symmetric operators and homogeneous
symmetric operators in one set of variables. Yet the action of one of the most important
bases of symmetric partial derivative operators, namely the Schur symmetric operators, was
still not explicitly given. We give such a description here. Once our formula is established,
we encourage the reader to revisit the previous work on the subject. For example, some
results of [5] become conceptually simpler using our description and we see exactly why
the multiplicity of the sign representation in a row diagram with a hole is as given in
Section 4 of [5]. Our result can also be used to give a better description, in terms of partial
Schur polynomials, of the vanishing ideal for the diagrams considered in [3]. Our hope is
that our contribution will help indescribing the generators of the vanishing ideal for the
general cases, and this will be the subject of future work.

At first it seems that thedescription of the Schur symmetric partial derivative operators
on∆ should follow directly from the expansion of Schur symmetric functions in terms of
Young tableaux, but this is not quite correct. One has to be careful with the effect of signs
when applying partial derivatives to lattice determinants. We thus need to re-derive this
expansion from the other basis, carefully keeping track of signs. This can be done in many
ways; here we chose to use the method of [10].

2. Basic definitions

The lattice cell in thei + 1-st row and j + 1-st column of the positive quadrant of
the plane isdenoted by(i , j ). We order the set of all lattice cells using the following
lexicographicorder:

(p1, q1) < (p2, q2) ⇐⇒ q1 < q2 or [q1 = q2 and p1 < p2]. (2.1)

For our purpose, alattice diagramis a finite list L = ((p1, q1), . . . , (pn, qn)) of lattice
cells such that(p1, q1) ≤ (p2, q2) ≤ · · · ≤ (pn, qn). Following the definitions and
conventions of [4], the coordinatespi and qi of a cell (pi , qi ) indicate the row and
column positions, respectively, of the cell. Forµ1 ≥ µ2 ≥ · · · ≥ µk > 0, we say that
µ = (µ1, µ2, . . . , µk) is apartition of n if n = µ1+· · ·+µk. We associate with a partition
µ the following lattice (Ferrers) diagram((i , j ) : 0 ≤ i ≤ k − 1, 0 ≤ j ≤ µi+1 − 1),
distinct cells ordered with (2.1), and we use the symbolµ for both the partition and
its associated Ferrers diagram. For example, given the partition (4, 2, 1), its Ferrers
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