

Available online at www.sciencedirect.com

European Journal of Combinatorics

European Journal of Combinatorics 26 (2005) 943-964

www.elsevier.com/locate/ejc

Elementary divisors of Specht modules

Matthias Künzer^a, Andrew Mathas^b

^a Abteilung Reine Mathematik, Universität Ulm, D-89069 Ulm, Germany ^b School of Mathematics and Statistics F07, University of Sydney, Sydney N.S.W. 2006, Australia

Available online 3 September 2004

Abstract

Let $\mathscr{H}_q(\mathfrak{S}_n)$ be the Iwahori-Hecke algebra of the symmetric group defined over the ring $\mathbb{Z}[q, q^{-1}]$. The *q*-Specht modules of $\mathscr{H}_q(\mathfrak{S}_n)$ come equipped with a natural bilinear form. In this paper we try to compute the elementary divisors of the Gram matrix of this form (which need not exist since $\mathbb{Z}[q, q^{-1}]$ is not a principal ideal domain). When they are defined, we give the relationship between the elementary divisors of the Specht modules $S_q(\lambda)$ and $S_q(\lambda')$, where λ' is the conjugate partition. We also compute the elementary divisors when λ is a hook partition and give examples to show that in general elementary divisors do not exist.

© 2004 Elsevier Ltd. All rights reserved.

MSC: 20C08; 20G05; 33D80

Keywords: Specht modules; Elementary divisors; Hook partitions

1. Introduction and statement of main results

The irreducible representations of the symmetric groups and their Iwahori–Hecke algebras have been classified and constructed by James [6] and Dipper and James [2], yet simple properties of these modules, such as their dimensions, are still not known. Every irreducible representation of these algebras is constructed by quotienting out the radical of a bilinear form on a particular type of module, known as a Specht module. The bilinear forms on the Specht modules are the objects of our study.

E-mail addresses: kuenzer@mathematik.uni-ulm.de (M. Künzer), mathas@maths.usyd.edu.au (A. Mathas). *URLs:* http://www.mathematik.uni-ulm.de/ReineM/kuenzer, http://www.maths.usyd.edu.au/u/mathas/.

One way of determining the dimension of the simple modules would be to first find the elementary divisors of the Gram matrix over $\mathbb{Z}[q, q^{-1}]$ and then specialize. This would also give the dimensions of the subquotients of the Jantzen filtrations of the Specht modules over an arbitrary field; see [7]. In general, such an approach is not possible because, as Andersen has shown, Gram matrices need not be diagonalizable over $\mathbb{Z}[q, q^{-1}]$; see [1, Remark 5.11]. We also give some examples of non-diagonalizable Specht modules in Section 7.

Let $G(\lambda)$ be the Gram matrix of the Specht module $S(\lambda)$. Then the first result in this paper shows that $G(\lambda)$ is diagonalizable if and only if $G(\lambda')$ is diagonalizable, where λ' is the partition conjugate to λ . Moreover, if $G(\lambda)$ is divisibly diagonalizable (that is, $G(\lambda)$ is equivalent to a diagonal matrix diag (d_1, \ldots, d_m) such that d_i divides d_{i+1} , for $1 \le i < m$), then so is $G(\lambda')$. In this case we can speak of elementary divisors and we show how the elementary divisors of $G(\lambda)$ and $G(\lambda')$ determine each other. This is a *q*-analogue of the corresponding result for the symmetric group [8].

We next consider the elementary divisors for the hook partitions. We show that when $\lambda = (n - k, 1^k)$, for $0 \le k < n$, the Gram matrix $G(\lambda)$ is always divisibly diagonalizable over $\mathbb{Z}[q, q^{-1}]$, and we determine the elementary divisors. Again, this is a *q*-analogue of the corresponding result for the symmetric groups [8]; however, the proof in the Hecke algebra case is more involved and requires some interesting combinatorics.

2. The Hecke algebra and permutation modules

Fix a positive integer *n* and let \mathfrak{S}_n be the symmetric group of degree *n*.

Let R be a commutative domain and let q be an invertible element in R.

The Iwahori–Hecke algebra of \mathfrak{S}_n with parameter q is the unital associative algebra \mathscr{H} with generators $T_1, T_2, \ldots, T_{n-1}$ and relations

$$\begin{array}{rll} (T_i-q)(T_i+1) &= 0 & \mbox{for } 1 \leq i < n, \\ T_iT_j &= T_jT_i & \mbox{for } 1 \leq i < j-1 < n-1, \\ T_iT_{i+1}T_i &= T_{i+1}T_iT_{i+1} & \mbox{for } 1 \leq i < n-1. \end{array}$$

Let $r_i = (i, i + 1)$, for i = 1, 2, ..., n - 1. Then $\{r_1, r_2, ..., r_{n-1}\}$ generate \mathfrak{S}_n (as a Coxeter group). If $w \in \mathfrak{S}_n$ then $w = r_{i_1} \cdots r_{i_k}$ for some i_j with $1 \le i_j < n$. The word $w = r_{i_1} \cdots r_{i_k}$ is reduced if k is minimal; in this case we say that w has length k and we define $\ell(w) = k$.

If $r_{i_1} \cdots r_{i_k}$ is reduced then we set $T_w = T_{i_1} \cdots T_{i_k}$. Then T_w is independent of the choice of reduced expression for w; see, for example, [10, 1.11]. Furthermore, \mathcal{H} is free as an *R*-module with basis $\{T_w \mid w \in \mathfrak{S}_n\}$.

A composition μ of *n* is a sequence of non-negative integers $(\mu_1, \mu_2, ...)$ that sum to *n*. If, in addition, $\mu_1 \ge \mu_2 \ge ...$, then μ is a partition of *n*.

Let μ be a composition of n and let \mathfrak{S}_{μ} be the associated Young subgroup. Then $\mathscr{H}(\mathfrak{S}_{\mu}) = \langle T_w \mid w \in \mathfrak{S}_{\mu} \rangle$ is a subalgebra of \mathscr{H} . Given a (right) $\mathscr{H}(\mathfrak{S}_{\mu})$ -module V, we define the induced \mathscr{H} -module

$$\operatorname{Ind}_{\mathscr{H}(\mathfrak{S}_{\mu})}^{\mathscr{H}}(V) = V \otimes_{\mathscr{H}(\mathfrak{S}_{\mu})} \mathscr{H}.$$

944

Download English Version:

https://daneshyari.com/en/article/10118338

Download Persian Version:

https://daneshyari.com/article/10118338

Daneshyari.com