

Contents lists available at ScienceDirect Journal of Combinatorial Theory, Series A

www.elsevier.com/locate/jcta

The minimum Manhattan distance and minimum jump of permutations

Simon R. Blackburn^a, Cheyne Homberger^b, Peter Winkler^{c,1}

 ^a Department of Mathematics, Royal Holloway University of London, Egham, Surrey TW20 0EX, United Kingdom
^b Department of Mathematics and Statistics, University of Maryland, Baltimore

County, Baltimore, MD 21250, USA ^c Department of Mathematics, Dartmouth, Hanover, NH 03755-3551, USA

ARTICLE INFO

Article history: Received 27 September 2017 Available online xxxx

Keywords: Permutations Asymptotic enumeration Manhattan distance

АВЅТ КАСТ

Let π be a permutation of $\{1, 2, \ldots, n\}$. If we identify a permutation with its graph, namely the set of n dots at positions $(i, \pi(i))$, it is natural to consider the minimum L^1 (Manhattan) distance, $d(\pi)$, between any pair of dots. The paper computes the expected value (and higher moments) of $d(\pi)$ when $n \to \infty$ and π is chosen uniformly, and settles a conjecture of Bevan, Homberger and Tenner (motivated by permutation patterns), showing that when d is fixed and $n \to \infty$, the probability that $d(\pi) \ge d + 2$ tends to e^{-d^2-d} . The minimum jump $mj(\pi)$ of π , defined by $mj(\pi) = \min_{1 \le i \le n-1} |\pi(i+1) - \pi(i)|$, is another natural measure in this context. The paper computes the asymptotic moments of $mj(\pi)$, and the asymptotic probability that $mj(\pi) \ge d + 1$ for any constant d.

© 2018 Elsevier Inc. All rights reserved.

E-mail addresses: s.blackburn@rhul.ac.uk (S.R. Blackburn), cheyneh@umbc.edu (C. Homberger), peter.winkler@dartmouth.edu (P. Winkler).

¹ This author is supported by NSF grants DMS-1162172 and DMS-1600116.

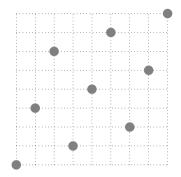


Fig. 1. The graph of the permutation $\pi = 147258369 \in \mathfrak{S}_9$.

1. Introduction

Let n be a positive integer, with $n \geq 2$. We write [n] for the set $\{1, 2, ..., n\}$, and we write \mathfrak{S}_n for the set of all permutations of [n]. We write a permutation $\pi \in \mathfrak{S}_n$ in one-line notation, so $\pi = \pi(1)\pi(2)...\pi(n)$. Recall that the graph of a permutation π is the set of points (dots) of the form $(i, \pi(i))$ for $i \in [n]$. Fig. 1 depicts the graph of the permutation $\pi = 147258369 \in \mathfrak{S}_9$.

The minimum Manhattan distance $d(\pi)$ of a permutation π is defined by:

$$d(\pi) = \min_{1 \le i < j \le n} \{ |i - j| + |\pi(i) - \pi(j)| \}.$$
 (1)

The permutation π in Fig. 1 has $d(\pi) = 4$ (which is, in fact, the largest possible value for a permutation in \mathfrak{S}_9). Note that for $n \ge 2$ we have $d(\pi) \ge 2$ for all $\pi \in \mathfrak{S}_n$.

The minimum Manhattan distance is a natural measure when thinking of a permutation as its graph, but was first studied (under the name of the *breadth* of a permutation) by Bevan, Homberger, and Tenner [2] in the context of permutation patterns. We now briefly explain this context.

Two sequences $a = a_1, a_2, \ldots, a_n$ and $b = b_1, b_2, \ldots, b_n$ of distinct real numbers are said to have the same *relative order* if $a_i < a_j$ precisely when $b_i < b_j$. For a given sequence a of length n, we define the *standardisation of a* to be the unique sequence on the letters [n] which is in the same relative order as a. The pattern ordering imposes a partial order on the set of all permutations: For $\pi \in \mathfrak{S}_n$ and $\sigma \in \mathfrak{S}_k$, we say that π contains σ as a pattern (denoted $\sigma \prec \pi$) if there is a subsequence of $\pi(1)\pi(2)\ldots\pi(n)$ whose standardisation is equal to $\sigma(1)\sigma(2)\ldots\sigma(k)$. For example, 213 \prec 34152 as seen by the first, third, and fourth entries, while 21 $\not\prec$ 123456.

A permutation $\pi \in \mathfrak{S}_n$ can contain at most n distinct patterns of length n-1, at most n(n-1)/2 patterns of length n-2, and at most $\binom{n}{d}$ patterns of length n-d. For an integer d, a permutation is d-prolific if it contains precisely $\binom{n}{d}$ distinct patterns of length n-d. Equivalently, a permutation is d-prolific if every choice of d deletions yields a different pattern. The notion of a prolific permutation was introduced by Homberger [7];

Download English Version:

https://daneshyari.com/en/article/10118818

Download Persian Version:

https://daneshyari.com/article/10118818

Daneshyari.com