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In this paper, we will study the chromatic number of a family 
of Cayley graphs that arise from algebraic constructions. 
Using Lang–Weil bound and representation theory of finite 
simple groups of Lie type, we will establish lower bounds 
on the chromatic number of a large family of these graphs. 
As a corollary we obtain a lower bound for the chromatic 
number of certain Cayley graphs associated to the ring of n ×n
matrices over finite fields, establishing a result for the case of 
SLn parallel to a theorem of Tomon [26] for GLn. Moreover, 
using Weil’s bound for Kloosterman sums we will also prove 
an analogous result for SL2 over certain finite rings.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Let G be a group, and let S be a symmetric subset of G, that is, a set satisfying 
S−1 = S. Moreover assume that 1 /∈ S where 1 is the identity element of G. The Cayley 
graph of G with respect to S, denoted by Cay(G, S), is the graph whose vertex set is 
identified with G, and vertices g1, g2 ∈ G are declared adjacent if and only if g−1

1 g2 ∈ S. 
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Recall also that the chromatic number of a graph G, denoted by χ(G), is the least cardinal 
c such that the vertex set V (G) can be partitioned into c sets (called color classes) such 
that no color class contains an edge in G.

The study of chromatic number of Cayley graphs and their subgraphs was first initi-
ated by Babai [4]. The focus of Babai’s paper was on finding Cayley graphs of a given 
group with a small chromatic number. For instance, it was shown in [4] that every solv-
able group G has a generating set S such that the chromatic number of Cay(G, S) is at 
most 3. It is easy to see ([4], Proposition 4.6) that χ(Cay(G, S)) = 2 for some generating 
set S if and only if G has a subgroup of index 2.

Bounding the chromatic number of Cayley graphs from below is a more subtle prob-
lem. Alon [2] considered random Cayley graphs of arbitrary finite groups and established 
strong asymptotically almost sure lower bounds for their chromatic number. In the ran-
dom model considered in this paper, S is a randomly chosen subset of G of a given 
cardinality k. Alon then establishes various lower bounds for the chromatic number of 
Cay(G, S) that hold with probability converging to 1 as n → ∞. In order for the bounds 
to be non-trivial, one needs k � logn. In the opposite direction, Alon also proved that 
if G is abelian, and k � log logn, then with probability tending to 1 as n → ∞, the 
inequality χ(Cay(G, S)) ≤ 3 also holds.

In this paper we will address similar problems in the case that the pair (G, S) arises 
from an algebraic construction, and can thus be viewed as highly structured. More pre-
cisely, let G ⊆ GLn be a Chevalley group. Such groups are naturally obtained from a 
simple complex Lie algebra [24]. G can also be viewed as a group scheme of finite type 
defined over Z, which implies that there is a finite set {fi}i∈I of polynomials with inte-
ger coefficients in variables xij such that for any unital ring R, the common solutions of 
{fi}i∈I form a group, which is denoted by G(R).

The reader interested in concrete examples may consider the special case G = SLn, 
which is defined by the equation det(xij) − 1 = 0. Note that the set of zeros of this 
polynomial over any unital ring R defines the group SLn(R), consisting of unimodular 
n by n matrices with entries in R. Let also S̃ be an affine subscheme of G of finite type 
over Z, namely

S̃ := {(xij) ∈ G : P1(xij) = · · · = Pr(xij) = 0}, (1)

where P1, . . . , Pr are polynomials with integer coefficients in xij . Since G and S̃ are 
defined over Z, for any prime power q we can consider the Fq-points of G and S̃ denoted 
by G(Fq) and S̃(Fq). Here Fq denotes the finite field with q elements. We always assume 
that 1 /∈ S̃ and denote by

GG,S(Fq) := Cay(G(Fq),S(Fq)), S(Fq) := S̃(Fq) ∪ S̃(Fq)−1, (2)

the Cayley graph of the group G(Fq) with respect to the symmetrized set S(Fq).
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