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equal to the dimension of a certain irreducible representation
of a Weyl group of type B.
© 2018 Elsevier Inc. All rights reserved.
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1. Introduction
1.1. Involution words

Let (W, S) be a Coxeter system and define Z = Z(W) = {z € W : 2 = 271} to
be the set of involutions in W. A reduced word for an element w € W is a sequence
(s1,82,...,8,) with s; € S of shortest possible length such that w = s1s9-+-sx. An
involution word for an element z € T is a sequence (s1, S2, . . ., S) with s; € S of shortest
possible length such that

z=(-((1 X81)Xs2) X)X 8k (1.1)

where for g € W and s € S we let g X s be either gs (if s and g commute) or sgs (if
sg # gs). When g € Z, the element g x s is also an involution. Less obviously, every
z € T has at least one involution word with the convention that the empty sequence
is the unique involution word of the identity element 1 € Z. We write R(w) for the set
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