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A B S T R A C T

Reliable evaluation of the strength of rock masses is required for failure analysis in rock engineering. This paper
describes the failure of rock mass specimens under triaxial compression via numerical testing based on the
Discrete Element Method (DEM). It investigates the fracturing phenomena in rock masses with pre-existing joint
sets and outlines a simple yet practical method for estimating compressive strength under complex joint geo-
metric and loading conditions. The simulations capture different failure regimes, including intact, sliding and
orthogonal failure, as joint geometric parameters are varied. Sensitivity studies demonstrate that the joint or-
ientation, joint radius and continuity factor are essential geometrical terms affecting the material strength. The
results reveal a linear relationship between the projected area of joint transections – which is introduced as a
proxy to represent the three geometrical parameters – and the vertical strength. Based on this finding, a hy-
pothesis for failure of jointed brittle materials is proposed, prescribing the influence of two factors: the com-
plexity of the joint configuration and the spacing between the sample surface and the joint network. Such an
approach, if validated, provides practitioners with a simple method for rapid estimation of compressive strength
of rock-like materials via measurements of the joint geometry.

1. Introduction

The main aim of fracture mechanics is to investigate material re-
sistance to fractures. Fractures within rock masses dominate failure
processes and the mechanical properties of rock. The lower strength of
rock masses as compared with intact rock is caused by the weaker
component – joints, the most common discontinuities – transecting the
rock into pieces. Understanding the fracture mechanics of rock masses
is essential to the design and performance prediction of constructions
built in and on rock masses. It has significant effects on mining [1],
mineral processing [2,3], civil engineering [4–6] and many other dis-
ciplines of science and engineering [7,8]. Although the evidence for
complex behaviours of rock masses under loading is overwhelming, the
dynamics of rock masses under triaxial compression is still obscure.
While it has long been known that fracture networks produce com-
plexity, the propagation of fractures and their influence on the rock
strength remain poorly understood.

The complex arrangement of joints makes it extremely difficult to
determine the mechanical properties of jointed materials [9]. The

mechanical response of rock masses under different applied loads has
different sensitivities to various geometrical parameters such as joint
persistence, orientation, continuity, etc. [10]. Due to the large number
of potential interactions among these parameters, it can prove difficult
to quantitatively determine their effect on rock failure and strength.

Applications of current failure criteria in rock strength estimation
are not convenient. Usually, practitioners need to identify the dis-
continuity types using a particular system of rock mass classification
and determine the parameter values required by the criterion. During
this process, manual errors often arise in rock mass classification, often
caused by subjective definitions or a wide value-range for each joint
type. Moreover, specific failure criteria can only be used for particular
forms of rock conditions from which they were deduced; sometimes
being misused beyond their original intended application range
[11,12].

Estimating material strength based on the discontinuity geometry
enjoys many benefits. Firstly, this approach is objective because the
strength assessment is based on measurable properties, which elim-
inates the manual errors associated with subjective rock mass
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classification. Secondly, the geometry-based strength estimation could
be applied to a range of jointed materials; eliminating the need to de-
duce specific failure criteria for certain materials.

Much effort has been made to reveal the mechanical properties of
jointed rocks via laboratory experimentation and numerical simulation.
Effects of persistent joints on the material properties have been widely
studied in the literature [13–17]. However, understanding of the be-
haviour of non-persistent jointed materials is limited. Although, some
scholars demonstrate the influence of the joint geometry on material
features [18–21,10], most specimens used in these studies are thin
slices which lead to results similar to those obtained in a 2D environ-
ment.

Although laboratory experiments have been broadly used to un-
derstand the complex mechanical features of rock masses, they are
difficult to assemble and conduct. Preparing specimens with artificial
joints is challenging. Furthermore, the direct observation and mea-
surement of fracturing phenomena within most materials is laborious
due to the rapidity of crack propagation and physical opaqueness. Also,
stress field perturbations caused by sample grips or boundaries cannot
be ignored. Equipment use, experiment configurations and sample
preparation are also relatively costly. In all, current practical impedi-
ments limit data acquisition for analysis of the failure behaviour of
jointed rock masses.

Numerical modelling, on the other hand, overcomes the short-
comings of laboratory experiments and provides an alternative avenue
to reveal the insights into the factors governing the strength and frac-
turing response of jointed rock masses. Numerical methods permit di-
rect observation and measurement of fracturing phenomena with sys-
tematically varying parameters. In addition, simulations provide
adequate flexibility in dealing with complex material features involving
inhomogeneity, anisotropy and boundary conditions [22]. Moreover,
the cost of conducting numerical studies is negligible compared with
corresponding laboratory tests.

Herein, a bonded particle model is employed to investigate de-
formation processes in jointed material under triaxial compression. The
DEM enables simulation of unconstrained nucleation and propagation
of cracks and can model complicated material features such as het-
erogeneities and voids without prohibitive increases in computational
complexity [23].

2. Numerical method and model arrangements

2.1. Discrete element method

The DEM is a numerical technique used to simulate the behaviour of
composite materials formed mainly of granular components, wherein
the specimen macroscopic behaviour is depicted as an assembly of
microscopic motions of individual particles [24,25]. The force inter-
actions on and between discrete elements depend upon the particular
physical scenario to be simulated. Simulations herein were performed
using ESyS-Particle (https://launchpad.net/esys-particle), a general-
purpose and open-source DEM software package.

ESyS-Particle represents the solid material as an assembly of dis-
crete spherical particles linked to adjacent particles with bonds that are
spring-like connections. The macroscopic properties of the DEM spe-
cimen are governed by the micromechanical parameters regulating the
strength and elasticity of bonds [26]. When the specimen deforms
under external loading, individual bonded interactions break when the
accumulated stress within the interaction exceeds a limitation governed
by a prescribed failure criterion. These interactions, subsequently, are
replaced with repulsive frictional interactions, simulating crack onset
and subsequent frictional sliding. This approach has proven to be sui-
table for modelling deformation processes in brittle discontinuous
materials subjected to a variety of external loading conditions.

2.2. Particle interactions and loading mechanisms

The interactions between two adjacent DEM particles involve six
degrees of freedoms – tension, compression, shearing, torsion and
bending – which can be expressed by four Hookean elastic interactions;
under the isotropic assumption for shearing and bending deformation
[26]. The failure of such elastic beam interactions is governed by a
generalized Mohr-Coulomb failure criterion:

⩾ +σ c σ θtan ,s N (1)

where σs and σN are the shear and normal stress within the elastic beam;
c and θ are respectively the cohesion and the friction angle of the in-
teraction. The bond adjoining particles i and j breaks forming a mac-
roscopic fracture surface. The normal stress (σN ; positive under tension)
and shear stress (σs) are computed in each time step as follows
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where FN and FS mean normal force and shear force between the par-
ticle i and j M, B and MT represent bending moment and torsion mo-
ment, A I, and J denote cross-sectional area, moment of inertia and
polar moment of inertia of the interaction, and Rij is the half length
between the two centers of the adjacent particles i and j.

Six rigid platens are placed and bonded to the six surfaces of cubic
samples to apply boundary forces. Compression or tension within the
DEM specimen is generated by platen movement towards or away from
the specimens respectively. For simulations of triaxial compression
tests, six platens initially accelerate uniformly to a prescribed stress.
The four lateral platens thereafter maintain the compression stress at a
prescribed value via a servo control mechanism. The two platens atop
and below the specimen continue the compression at a constant rate
until the specimen fails macroscopically.

2.3. Model description

2.3.1. Intact rock
A rock mass usually comprises intact rock pieces transected by

discontinuity planes. Via a geometrical space-filling sphere packing
algorithm, around 110,000 non-overlapping spheres are packed into a

× ×30 mm 30 mm 30 mm cubic region with beveled edges, as shown in
Fig. 1. The radii of spheres range between =r 0.2 mmmin and

=r 0.6 mmmax . Microscopic model parameters for this specimen are
listed in Table 1. The uniaxial compressive strength of the intact spe-
cimen is =σ 127.71 MPaU , measured via simulations with zero lateral
stress.

For the simulation of triaxial compression, the samples are com-
pressed vertically and laterally by six movable platens. During the si-
mulations, the six platens are initially moved with a stress increasing
linearly for 20,000 time steps. After that the four lateral platens are
fixed at a stress of 22.68 MPa and the top and below platens vertically
compress specimens with a constant velocity.

2.3.2. Joint configuration
A conceptual model is used to represent a non-ubiquitous rock mass

with a single joint set distributed fracture network (DFN) [27,28]. All
joints are penny-shaped and non-persistent. The geometrical para-
meters of the joint system follow the definition by Prudencio and Van
Sint Jan [21]. β is the joint orientation relative to the σ1-direction; γ is
the joint step angle; α is the joint tip to tip angle; r is the radius of the
penny-shaped joint; Lr is the length of the rock bridge; d is the spacing
between joint layers. Additionally, Lb is the boundary spacing between
the specimen surface and the joint network and nj is the number of joint
layers. The continuity factor k represents the ratio of the joint
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