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A B S T R A C T

The S-RM is treated as an equivalent homogenous c-φ geomaterial. A hyperbolic p–y curve, which is governed by
initial stiffness and ultimate resistance, is used to describe the nonlinear interaction between the S-RM and the
pile. The initial stiffness and ultimate resistance are derived based on two-phase composite material theory and
empirical equations for friction angle and cohesion of S-RMs, respectively. The predicted responses of laterally
loaded piles in S-RMs with different volumetric block proportions are validated with 3D numerical simulations.
The influencing factors on the p–y curves are also investigated in this paper.

1. Introduction

Piles are often used in a foundation design to support infrastructure,
both on land and in the ocean, such as bridges, high-rise buildings,
platforms, and windmills. The pile’s response under lateral loading
from the infrastructure is usually analyzed with the p–y curve method,
assuming that the soil is a series of nonlinear springs connected to the
pile segments. Different types of geomaterials, such as clay, sand, and
rock mass, have different formulas to express the p–y curves [1–4]. In
practice, foundations composed of soil and coarse aggregates, such as
rock blocks, gravel, and cobble particles, are very common. This type of
mixture is generally referred to as soil-rock mixture (S-RM) [5] or
bimrock [6]; in this study, the term S-RM is used. Because the S-RMs
contain oversized rock blocks, conventional triaxial or direct shear test
cannot be used to investigate the influence of oversized rock blocks on
the mechanical behavior of S-RMs due to the size limitation of the test
equipment. For the design of laterally loaded piles in the S-RM, how-
ever, it is essential to develop a p–y curve specifically for S-RM so that
the mechanical properties of the S-RM are correctly accounted for.

The motivation to develop p–y curves for S-RMs is based on the fact
that the mechanical properties of S-RMs are different from those of soils
or rock masses. Finding the threshold between soils and rock blocks is
the first task to be addressed in practice. Medley and Lindquis proposed
a characteristic engineering dimension (Lc), which can be defined as,
for example, the height of the slope in slope engineering and the dia-
meter of the sample in triaxial tests, and 5% of Lc was suggested as the
threshold to differentiate soil matrix and rock blocks in S-RMs [6,7].
This has become the standard for the preparation of samples for in situ

and laboratory tests of S-RMs. In these tests, the S-RMs are often
characterized as a c-φ geomaterial, and thus the Mohr-Coulomb cri-
terion is used to describe the shear strength of the S-RMs. Through in
situ shear tests, Xu et al. [5] found that the shear strength of the S-RM
was related to the weight proportion of the rock blocks. Coli et al. [8]
found an overall larger friction angle and lower cohesion for S-RMs
than for a clayey matrix. Xu et al. [9] found that the deformation and
fracture mechanisms of the S-RM were controlled by the volumetric
block proportion (VBP) of the rock blocks. The VBP is a critical para-
meter of the shear strength of S-RMs, a fact also verified by numerical
simulations and laboratory tests on S-RM samples. Vallejo and Mawby
[10] attributed the influence of rock blocks on the shear strength of S-
RMs to the different porosities corresponding to different VBPs. By
using discrete element method (DEM) simulations, Xu et al. [11] con-
cluded that the shear strength of S-RMs was higher than that of soils
because of the existence of rock blocks. Li [12] proposed two equations
for the estimation of the constant volume friction angle, based on la-
boratory tests on mixtures of fine and coarse fractions. Ruggeri et al.
[13] investigated the possibility of estimating the shear strength of S-
RMs based on laboratory experiments. The identification of the matrix
fraction in well-graded mixtures and the effect of variations in the
grading of the granular fraction were discussed. Jin et al. [14] con-
ducted laboratory and numerical experiments on S-RM samples with
and without cements. They found the influence of the VBP on the S-RM
strength was dependent on the skeleton effect of the rock blocks. Based
on statistical and regression analyses of laboratory and in situ test data,
Kalender et al. [15] proposed equations to predict the cohesion and
friction angle of S-RMs. These equations describe the influence of the
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VBP, the soil–rock interface strength, and the repose of the rock blocks
on the overall strength of the S-RM.

For the design of laterally loaded piles in S-RMs, both the friction
angle and cohesion should be considered in the p–y curve method.
However, existing p–y curves are only suitable for cohesive soil, cohe-
sionless soil, or rock masses. For cohesive soil, Matlock [16], Reese and
Welch [17] obtained the p–y curves by in situ testing of soft marine clay
sites and stiff clay foundations, respectively. For cohesionless soil,
Reese et al. [2] developed p–y curves for laterally loaded piles in sand.
Fan and Long [18] evaluated p–y curves for sand using the finite ele-
ment method. For rock masses, Reese [3] proposed a p–y curve for weak
rock based on two sets of in situ experimental data. Cho et al. [19]
modified Reese’s weak rock model [3] based on in situ test data. Liang
et al. [4] proposed p–y curves for rock masses based on theoretical and
numerical analyses. The p–y curves were verified by monitoring the pile
response. Although previous researchers did not provide straightfor-
ward p–y curves for S-RM, they found that the curves were not only
related to the pile design parameters, such as pile diameter and stiff-
ness, but also to the mechanical properties of the geomaterials, such as
the initial stiffness and ultimate resistance of soils or rock masses. These
critical parameters and the methods by which p–y curves were devel-
oped provide a possible path for the development of p–y curves for
laterally loaded piles in S-RMs. Considering the inhomogeneity of S-
RMs, the variability of rock block position, and the rock block size, the
p–y curves for S-RMs could be used for reliability analyses of both active
and passive piles in S-RMs.

In this study, we first develop p–y curves based on the hyperbolic
equation. A framework for developing the p–y curves of S-RMs is pro-
posed. Second, the p–y curve for S-RM is implemented in the laterally
loaded pile software Pypile (www.yongtechnology.com) that uses the
Java programming language. The responses of the piles simulated with
Pypile and the three-dimensional numerical simulations are compared
to verify the proposed p–y curve method. Third, the influences of the
VBP, the soil–rock interface strength, and the repose of the rock blocks
on the proposed p–y curve are investigated. Finally, we discuss the
proper ranges of VBP and rock block diameters for the proposed
method.

2. Methodology

2.1. Hyperbolic formula of the p–y curve

Several mathematical formulas, such as the hyperbolic equation and
the exponential function, have been used to match p–y curves obtained
from laterally loaded pile tests. Yang [20] investigated different
mathematical formulas based on the goodness of fit with p–y curves
derived from field test data. It was concluded that the hyperbolic
equation could be used to provide the best fit for the general shape of
the p–y curves deduced from the tests. The hyperbolic equation was also
successfully used to express p–y curves in sand [21], clay [1,22], and
rock masses [4]. This illustrates that the hyperbolic equation is suitable
for both soils and rocks. Therefore, the hyperbolic equation is adopted
in this study to express the p–y curves for S-RMs. The hyperbolic
equation is mathematically expressed as
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where Ki is the initial stiffness of the p–y curve (initial tangent slope of
the p–y curve) and pu is the ultimate resistance of the S-RM per unit pile
length. The shape of the hyperbolic p–y curve is controlled by the values
of Ki and pu according to Eq. (1).

2.2. Initial stiffness of S-RMs

Because there are no existing mathematical formulas to express the

initial stiffness of S-RM, two initial stiffness formulas are evaluated in
this paper. The first one is suitable for laterally loaded piles in clay,
which is proposed by Bowles [23] and Rajashree and Sitharam [24] and
expressed as:
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where E is Young’s modulus of the soil; υ is Poisson’s ratio of the soil; D
is the pile diameter; and EpIp is the flexural rigidity of the pile. Geor-
giadis and Georgiadis [25] proved that Eq. (2) estimated the initial
stiffness with reasonable accuracy in clayey soils, with discrepancies
not exceeding 15%.

The second initial stiffness formula is suitable for rock masses,
which is proposed by Liang et al. [4] and expressed as:
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where Dref is a reference pile diameter and equal to 0.305m.
These two formulas reflect the difference between initial stiffness of

a laterally loaded pile in a relatively soft geomaterial (clay) and in a
relatively hard geomaterial (rock masses). These two geomaterials are
common components the of the S-RM (e.g. the matrix and block). Thus,
Eqs. (2) and (3) are selected as the initial stiffness of the p–y curve for S-
RMs. The applicability of these equations will be evaluated later. Cor-
respondingly, the soil parameters, E and υ in Eqs. (2) and (3), should
represent the elastic modulus and Poisson’s ratio of S-RMs, respectively.

2.3. Ultimate resistance of the S-RM

The Brinch-Hansen method [26] is introduced to derive the ultimate
resistance of S-RMs over the depth of the pile. Since S-RMs are c-φ
geomaterials, the methods for cohesive soil (φ=0) or cohesionless soil
(c=0) is not suitable for the calculation of the ultimate resistance.
However, the Brinch-Hansen method can be an alternative to the the-
ories for cohesive or cohesionless soils by setting φ=0 or c=0. Thus,
the ultimate resistance is expressed as

= +p K γz K c D( )u q c (4)

= − +γ VBP γ VBPγ(1 ) m b (5)

where pu is the ultimate resistance per unit pile length, which is related
to the difference between passive and active earth pressures; γ, γm, and
γb are the unit weights of the S-RM, the soil matrix, and the rock blocks,
respectively; c is the cohesion of the S-RM; D is the pile diameter; z is
the depth below the ground surface; Kq and Kc are passive resistance
coefficients, and are functions of φ and normalized z/D, respectively.
The equations related to Kq and Kc are provided in Appendix A. Typical
values of Kq and Kc with different friction angles are shown in Fig. 1.

3. Mechanical properties of S-RMs

3.1. Elastic modulus and Poisson’s ratio

Based on the theorems of minimum potential energy and minimum
complementary energy of the theory of elasticity, Hashin [27] proposed
an overall model for the elastic modulus and Poisson’s ratio of com-
posite materials composed of an elastic matrix and rigid particles. The
Hashin equations [27] to calculate the elastic modulus and the Pois-
son’s ratio of S-RMs are re-written as follows:
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