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Abstract— We discuss the inductive classification problem by 

proposing a joint framework termed Adaptive Non-negative 

Projective Semi-Supervised Learning (ANP-SSL). Specifically, 

ANP-SSL integrates the adaptive inductive label propagation, 

adaptive reconstruction weights learning and the neighborhood 

preserving projective nonnegative matrix factorization (PNMF) 

explicitly. To make the label prediction results more accurate, 

ANP-SSL incorporates the semi-supervised data representation 

and classification errors into regular PNMF for minimization, 

which can enable our ANP-SSL to perform the adaptive weights 

learning and label propagation over the spatially local and part-

based data representations, which differs from most existing 

work that usually assign weights and predict labels based on the 

original data that often has noise and corruptions. Moreover, 

existing methods usually pre-assign weights before the process 

of label estimation, but such operation cannot ensure the learnt 

weights by independent step to be optimal for the subsequent 

classification. The combined representation error can also make 

the learnt reduced part-based representations of neighborhood 

preserving PNMF, which can potentially enhance the prediction 

results. By minimizing the classification error jointly over the 

neighborhood preserving nonnegative representation can make 

the embedding based classification efficient. Extensive results on 

several public image databases verified the effectiveness of our 

ANP-SSL, compared with other state-of-the-art methods.   
 

Index Terms— Adaptive projective semi-supervised learning; 

Inductive label propagation; non-negative matrix factorization; 

representation and classification 

I. INTRODUCTION 

Representing and classifying real data by performing semi-

supervised learning (SSL) has been an important topic in the 

fields of neural networks and data mining [1-4][10][31-34] 

[49-58]. SSL methods can obtain knowledge and valuable 

information from the setting equipped with a small number of 

labeled data and a large amount of unlabeled data, which well 

suits the characteristics of real application data, since most 

real data are unlabeled, huge in volume and also difficult to 

distinguish in practical applications. Towards handling these 

issues, semi-supervised data representation and classification 

methods can effectively deal with the unlabeled data by fully 

using class formation of the small number of labeled data and 

building the connections between labeled and unlabeled data 

via the pairwise similarity measure. It is worth noticing that 

the SSL methods have been widely and successfully used to 

various real applications, e.g., data classification, clustering, 

regression analysis and information retrieval, etc.   

In recent years, Label Propagation (LP) [5][7][11][15][21-

22][27], as a representative SSL classification algorithm, has 

aroused considerable attention and interests in academia due 

to its elegant formulation in efficiency and effectiveness, and 

the requirements in real applications. The learning process of 

LP is to propagate label information of the labeled data to the 

unlabeled data based on trading-off the manifold smoothness 

and label fitness [5][7][11][15]. That is, label formation of 

each sample is partly received from its initial state encoded 

by the label fitness term and is partly from its neighborhoods 

encoded by the manifold smoothness term. Based on whether 

outside new data can be involved efficiently, existing models 

of LP can be roughly divided into inductive and transductive 

settings. Tho transductive learning methods aim to estimate 

the unknown labels of inside unlabeled data, but they cannot 

predict the unknown labels of outside unlabeled data. Several 

representative transductive LP learning algorithms consist of 

SSL using Gaussian Fields and Harmonic Functions (GFHF) 

[9], Learning with Local and Global Consistency (LLGC) 

[16], Linear Neighborhood Propagation (LNP) [5], Special 

Label Propagation (SLP) [28], Projective Label Propagation 

(ProjLP) [38], Class Dissimilarity based LNP (CD-LNP) [18], 

Robust Linear Neighborhood Propagation (R-LNP) [39], and 

Sparse Neighborhood Propagation (SparseNP) [37], etc. It is 

worth noting that several researchers have also incorporated 

the idea of semi-supervised label propagation learning into 

the Non-Negative Matrix Factorization (NMF) [6] and the 

Projective NMF (PNMF) frameworks [13], termed Semi-

Supervised NMF (SSNMF) [47] and Semi-Supervised PNMF 

(Semi-PNMF) [48]. Note that both Semi-PNMF and SSNMF 

are also the transductive methods as aforementioned models. 

To enable transductive methods to handle outside new data, 

the authors of LNP [5] have suggested to involve new data by 

reconstructing the label of each new data using the predicted 

soft labels of its neighbors from the training set, which is not 

straightforward, and time-consuming especially for large-

scale testing set [23], because this approach needs to find the 

neighbors of each new test data by performing the nearest-

neighbor search firstly. To handle the out-of-sample problem 

efficiently, several extensions by direct embedding have been 
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