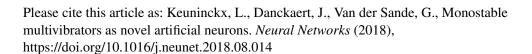
Accepted Manuscript

Monostable multivibrators as novel artificial neurons

Lars Keuninckx, Jan Danckaert, Guy Van der Sande


PII: S0893-6080(18)30240-5

DOI: https://doi.org/10.1016/j.neunet.2018.08.014

Reference: NN 4018

To appear in: Neural Networks

Received date: 1 March 2018 Revised date: 11 July 2018 Accepted date: 13 August 2018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Monostable multivibrators as novel artificial neurons

Lars Keuninckx^{a,1,*}, Jan Danckaert^a, Guy Van der Sande^{a,**}

^a Applied Physics Research Group (APHY), Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium

Abstract

Retriggerable and non-retriggerable monostable multivibrators are simple timers with a single characteristic, their period. Motivated by the fact that monostable multivibrators are implementable in large quantities as counters in digital programmable hardware, we set out to investigate their applicability as building blocks of artificial neural networks. We derive the nonlinear input-output firing rate relations for single multivibrator neurons as well as the equilibrium firing rate of large recurrent networks. We show that in rate-encoded monostable multivibrators networks the synaptic weights are tunable as the period ratio of connected units, and thus reconfigurable at run time in a counter-based digital implementation. This is illustrated with the task of handwritten digit recognition. Furthermore, we show in a task-independent manner that networks of monostable multivibrators are capable of nonlinear separation, when operating directly on pulse streams. Our research implies that pulse-coupled neural networks with excitable neurons showing a delayed response can perform computations even when working solely with suprathreshold pulses.

Keywords: neuron model, ANN, network dynamics, pulse coupled, PCNN *PACS:* 87.19.ll, 87.85.Wc, 87.18.Sn

1. Introduction

Historically, artificial neural networks (ANN) have employed many different neuron models. Some, such as the Hodgkin-Huxley Hodgkin and Huxley (1952) model, are firmly grounded in physiological principles, aiming to capture biological reality. The FitzHugh-Nagumo (FHN) model FitzHugh (1961); Nagumo et al. (1962), is a mathematical simplification of the Hodgkin-Huxley model, that is still able to explain many of the dynamical phenomena. Other neuron

^{*}Principal corresponding author

^{**}Corresponding author

Email addresses: lkeuninc@ulb.ac.be (Lars Keuninckx), jan.danckaert@vub.be (Jan Danckaert), guy.van.der.sande@vub.be (Guy Van der Sande)

¹Currently at: Université Libre de Bruxelles, Consciousness Cognition & Computation Group (CO3), Avenue Franklin Roosevelt 50 - 1050 Bruxelles.

Download English Version:

https://daneshyari.com/en/article/10127113

Download Persian Version:

https://daneshyari.com/article/10127113

<u>Daneshyari.com</u>