
Microprocessors and Microsystems 63 (2018) 169–181 

Contents lists available at ScienceDirect 

Microprocessors and Microsystems 

journal homepage: www.elsevier.com/locate/micpro 

TELEPORT: Hardware/software alternative to CUDA shared memory 

programming 

� 

Ahmad Lashgar a , ∗, Ehsan Atoofian 

b , Amirali Baniasadi c 

a Electrical and Computer Engineering Department, University of Victoria, Canada 
b Lakehead University, Canada 
c Electrical and Computer Engineering Department, University of Victoria, 3800 Finnerty Rd, Victoria BC V8P 5C2, Canada 

a r t i c l e i n f o 

Article history: 

Received 18 March 2018 

Revised 11 September 2018 

Accepted 13 September 2018 

Available online 14 September 2018 

Keywords: 

Computing methodologies parallel 

programming languages 

Software and its engineering runtime 

environments 

Hardware hardware accelerators 

Computer systems organization single 

instruction 

Multiple data 

Accelerator 

GPGPU 

CUDA 

Software-managed cache 

Prefetching 

a b s t r a c t 

Using software-managed cache in CUDA programming provides significant potential to improve memory 

efficiency. Employing this feature requires the programmer to identify data tiles associated with thread 

blocks and bring them to the cache explicitly. Despite the advantages, the development effort required to 

exploit this feature can be significant. The goal of this paper is to reduce this effort while maintaining the 

associated benefits. To this end, we first investigate static precalculability in memory accesses for GPGPU 

workloads, at the thread block granularity. We show that a significant share of addresses can be precal- 

culated knowing thread block identifiers. We build on this observation and introduce TELEPORT. TELE- 

PORT is a novel hardware/software scheme for delivering performance competitive to software-managed 

cache programming, but at no extra development effort. On the software side, TELEPORT’s static analyzer 

parses the kernel and finds precalculable memory accesses. We introduce Runtime API calls to pass this 

information to hardware. On the hardware side, this information is used to fetch the data required for 

each thread block into shared memory before the thread block starts execution. With this hardware sup- 

port, TELEPORT outperforms hand-written CUDA code as a result of the associated DRAM row locality 

improvement. Investigating a wide set of benchmarks, we show that TELEPORT improves performance 

of hand-written implementations, on average, by 32% while reducing development effort by 2.5X. Our 

estimations show that the hardware overhead associated with TELEPORT is below 1%. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Conventional GPUs have had a small cache per core to buffer 

input/output of the graphical pipeline. This buffer is critical to the 

performance of the processor as it facilitates avoiding significant 

amount of global synchronization and DRAM accesses. Later, in 

the GPU computing era, GPGPU programming models introduced 

a new memory hierarchy, called shared memory in CUDA (or lo- 

cal memory in OpenCL), to allow programs to take advantage of 

this buffer. 1 The new memory hierarchy is a software-managed 

cache (the same buffer in graphical pipeline) and can be shared 

among collaborating threads (known as thread blocks). This cache 

can be exploited in various ways to improve kernel’s memory effi- 

ciency [24,38,42] . By using the software-managed cache, compared 

� This work is supported by the Natural Sciences and Engineering Research Coun- 

cil of Canada (NSERC). 
∗ Corresponding author. 

E-mail address: lashgar@uvic.ca (A. Lashgar). 
1 This paper uses CUDA terminology. 

to hardware-managed cache, the programmer can assure the data 

will not be evicted by other cache requests. 2 Also parallel threads 

can fetch the data tile collaboratively to improve memory-level 

parallelism. Typically, software-managed cache accesses have 8X 

higher bandwidth [41] and 20X lower delay [42] than DRAM ac- 

cesses and fetching the data from the cache is 32X more energy- 

efficient than DRAM [5] . 

Programming the software-managed cache, however, involves 

tremendous development effort (defined as the amount of effort 

required to develop the software, estimated by the number of lines 

of code.). Firstly, the programmer should identify the data to be 

fetched into the cache. Candidate data are the arrays representing 

high temporal/special locality. Secondly, code should be modified 

to add an extra array explicitly representing the software-managed 

cache. To this end, two set of indexes should be maintained; global 

and shared memory spaces. 

2 Cache is allocated at the dispatch time of thread block and deallocated at the 

end of its execution. 

https://doi.org/10.1016/j.micpro.2018.09.004 

0141-9331/© 2018 Elsevier B.V. All rights reserved. 

https://doi.org/10.1016/j.micpro.2018.09.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2018.09.004&domain=pdf
https://doi.org/10.13039/501100000038
mailto:lashgar@uvic.ca
https://doi.org/10.1016/j.micpro.2018.09.004


170 A. Lashgar et al. / Microprocessors and Microsystems 63 (2018) 169–181 

Fig. 1. Comparing three different implementations of Matrix-matrix Add and Jacobi 

iteration. Bars report kernel time and numbers below the bar indicate the develop- 

ment effort, normalized to Baseline (Effort is estimated by the number of lines of 

code.). 

In this paper, we introduce TELEPORT, a hardware/software 

mechanism, to partially offload the shared memory development 

effort from the programmer to the compiler, while not sacrificing 

performance. Under TELEPORT, the compiler analyzes CUDA ker- 

nels to statically identify the data tiles assigned to each thread 

block. Later, during runtime, hardware loads the designated tiles 

into the software-managed cache in advance for each thread block. 

When both TELEPORT and hand-written CUDA versions implement 

similar algorithms, TELEPORT can outperform CUDA versions via a 

unique hardware optimization, improving DRAM row locality. 

On the software side, we develop a static analyzer to parse the 

kernel, identify the candidate arrays, and determine data ranges 

that each thread block accesses. Extra procedure calls are intro- 

duced to pass this information in an abstract form to GPU. The 

procedure calls configure preload table in the hardware, before ker- 

nel launch calls. These steps can be fully integrated into the kernel 

compilation phase. 

On the hardware side, a logical preload table per kernel is 

maintained. Upon dispatching a new thread block to GPU core, the 

thread block dispatcher issues a burst of memory requests to fetch 

the thread block’s data, using the information in preload table. All 

threads of the thread block are put on hold till tiles are loaded 

completely. Putting the thread block on hold also stops threads 

from issuing redundant memory accesses, avoiding the generation 

of excessive memory bandwidth traffic (We also study alternatives, 

leveraging timeliness and bandwidth demand to maximize perfor- 

mance.) 

To take a glance at the performance and development ef- 

fort advantages of TELEPORT, we present a subset of findings in 

Fig. 1 where we compare three different implementations of two 

benchmarks: matrix-matrix addition (A + B = C) and Jacobi it- 

erative method (See Section 4 for methodology.) The first imple- 

mentation (Baseline) does not use the software-managed cache. 

The second implementation (Hand-written) employs the software- 

managed cache. The third implementation (TELEPORT) analyzes 

the source code of the Baseline implementation and takes ad- 

vantage of the opportunities available for using software-managed 

cache (notice that this implementation relies on hardware sup- 

port.) Below we explain each benchmark. 

Matrix-matrix addition. Under Baseline, every thread calcu- 

lates one element of the output matrix. While performance is very 

poor, the development effort is fairly low. Under Hand-written, 

threads of every thread block collaboratively fetch tiles of A and 

B to the software-managed cache and calculate the sum. This im- 

plementation exploits data locality among threads of the thread 

block and removes redundant memory fetches within thread block. 

While performance is very high, Hand-written implementation de- 

mands higher development effort compared to Baseline (2.25X 

greater). Under TELEPORT, development effort is similar to Base- 

line. During the compile time, the static analyzer parses the Base- 

line’s kernel to specify the ranges of A and B that are assigned to 

each thread block. Finding opportunities for caching A and B, the 

compiler injects API calls before the kernel launch to configure the 

preload table for the kernel. With hardware support, the input tiles 

are fed to the thread block during runtime through the software- 

managed cache. As reported, TELEPORT outperforms Hand-written 

by 23%. As we explain later, part of this improvement comes from 

lowering the number of dynamic instructions. 

Jacobi iterative method. In this benchmark, every thread calcu- 

lates one element in the output by applying the smoothing func- 

tion over nine elements (8 neighbors plus the element itself). This 

results in a strong data spatial locality among the thread inputs 

data as threads use adjacent elements to calculate the output. 

Under Baseline, threads fetch the elements from global memory 

separately. This implementation relies merely on memory access 

coalescing capabilities of hardware [27] . Hand-written fetches a 

tile of data, covering the input of all collaborating threads, into 

the shared memory. This lowers the global memory load instruc- 

tions by nearly 9X (for a tile of 16 ∗16 threads, Baseline performs 

16 ∗16 ∗9 loads and Hand-written performs (16 + 1) ∗ (16 + 1) ∗ 1 

loads.). But not all of this gain translates to speedup, since Hand- 

written need to access the shared memory for (16 ∗16 ∗9) ∗2 times 3 ). 

TELEPORT analyzes Baseline kernel and identifies the input tile as- 

sociated with collaborating threads. This, combined with hardware 

support, lowers the development effort of Hand-written by 2.88X 

and improves its performance by 6%. 

In this paper, we investigate a wide set of benchmarks and 

show TELEPORT improves performance of Baseline and Hand- 

written implementations, on average, by 56% and 32%, respectively. 

We also show TELEPORT lowers development effort by 1.46X to 

3.4X, compared to Hand-written. TELEPORT uses the unused space 

in the software-managed cache of the GPU core as a buffer for 

storing tiles. The hardware overhead associated with TELEPORT in- 

cludes the preload table and TELEPORT’s controller unit (which are 

shared among GPU cores) plus an array of tags per GPU core for 

indexing the software-managed cache. Our estimations show that 

the hardware overhead is below 1%. 

In summary we make the following contributions: 

– We investigate static precalculability of memory accesses in 

CUDA kernels, at the thread block granularity. To this end, we 

develop a static analyzer to parse one CUDA kernel at a time. 

This analyzer examines every array index in the kernel to de- 

termine if it is precalculable. A precalculable index is an index 

whose range of values can be decided prior to kernel launch, 

by knowing the thread block identifier. Otherwise, the index 

is non-precalculable. We investigate 16 benchmarks and show 

that the majority of indexes are in fact precalculable. 

– We introduce a simple abstract form to encapsulate the static 

analyzer information. We introduce API calls to covey this in- 

formation to hardware. The information represents the range 

of data assigned to each thread block as a parameter of thread 

block identifier. During runtime, hardware evaluates the identi- 

fier and precisely determines the range of data assigned to each 

thread block. 

– We introduce a low-overhead hardware mechanism to store the 

encapsulated information, calculate the range of data assigned 

to each thread block, and load the data for thread blocks. 

– We evaluate our hardware/software scheme, TELEPORT, using 

12 benchmarks that have large number of precalculable in- 

dexes. We show TELEPORT’s performance and development ef- 

fort advantages are remarkable. We also show TELEPORT im- 

proves DRAM row locality. This row locality improvement is 

achieved while keeping the number of memory accesses as low 

as the baseline. 

3 2 factor accounts for one store and one load. 



Download English Version:

https://daneshyari.com/en/article/10127142

Download Persian Version:

https://daneshyari.com/article/10127142

Daneshyari.com

https://daneshyari.com/en/article/10127142
https://daneshyari.com/article/10127142
https://daneshyari.com

