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a  b  s  t  r  a  c  t

In many  gait  applications,  the  focal  events  are  the stance  and swing  phases.  Although  detecting  gait
events  using  electromyography  signals  will  help  the  development  of assistive  devices  such  as  exoskeleton,
orthoses,  and  prostheses,  stance  and  swing  phases  have  yet to be  observed  using  electromyography
signals.  The  core  of  this  study  is to propose  a classification  system  for  both  stance  and  swing  phases
based  on  electromyography  signals.  This  is to  be done  by extracting  the  patterns  of  electromyography
signals  from  time  domain  features  and  feeding  them  into  an artificial  neural  network  classifier.  In addition,
a different  number  of input  features  and two  prominent  training  algorithm  of  artificial  neural  network
have  been  employed  in  this  study.  Eight  subjects  that  participated  in this  study  were  divided  into  two
categories  namely,  learned  (first  seven  subjects)  and unlearned  data  (the  remaining  one  subject).  It was
observed  that  Levenberg-Marquardt  algorithm  with  five  time  domain  features  performed  better  than
other  features  with  an  average  percentage  of  classification  accuracy  of  87.4%.  This  system  was  further
tested  with  electromyography  signals  of learned  and  unlearned  data  to identify  the  stance  and  swing
phases  in  order  to detect  the  timing  of  heel  strike  and  toe  off. The  mean  absolute  different  values  between
artificial  neural  network  and  footswitch  data  for learned  data  were  16  ±  18  ms  and  21 ± 18  ms for  heel
strike  and  toe  off,  respectively.  For  this  case,  no significant  differences  (p <  0.05)  were  observed  in  mean
absolute  different  for heel  strike  and  toe  off detections.  Besides,  the  mean  absolute  different  values  of
unlearned  data  were  shown  to be acceptable,  35 ± 25  ms  for  heel  strike  and  49  ± 15  ms  for  toe off.  By
the  end  of  this  experiment,  basing  the examination  of  gait  events  with  electromyography  signals  using
artificial  neural  network  is possible.

©  2018  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The recent increase on gait event detection can be attributed
to it being and effective method in medical rehabilitation treat-
ment. Other than facilitating the examination of Parkinson’s disease
[1], the analysis and monitoring of gait events also help in treat-
ments for children with cerebral palsy [2] and muscle injuries [3,4].
Furthermore, gait event detection can also aid the development
of assistive devices for human body such as ankle foot (AF), hip
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knee (HK) and knee ankle foot (KAF) orthoses and exoskeletons, as
discussed by Yan et al. [5].

Stance and swing phases of gait are generally the locus of HK,
KAF, passive and active AF orthoses development [6–9]. These
events were also proven to have a positive, albeit short-term effect
on AF orthoses of ankle kinematics [10], in addition to potentially
enhancing ones walking capacity [11]. Therefore, the gait granular-
ity of the two phases are enough to synchronize the active motors
in wearable sensors in functional electrical simulation [12].

In the development of assistive devices, wearable sensors such
as accelerometer and gyroscope were used to control the actuator.
Such wearable sensors will require gravity compensation, correct
placement of sensors, specific calibration procedures, chances of
drift error if the angle needed to be computed and may  produce
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errors with negative percentages [12,15]. Recent developments
of assistive devices have heightened the concept of using elec-
tromyography (EMG) signals as the input for the control of powered
human-machine interactions [19]. For instance, the combination
of EMG signals with mechanical/kinematic sensors in transfemoral
amputees seemed to have promising potential in intent recognition
[20] and onset gait initiation [21]. Such approach will enable users
to operate protheses device using their own muscles. Similarly for
electric-powered wheelchair [22], robot arm [23] and exoskeleton
robots [24]. In 2016, the development of passive AF orthoses is
drawn from EMG  signals and ankle positioning as its main sources
[25]. However, EMG  signals during stance and swing phases had
not been addressed [12,27].

A periodic pattern such as EMG  signals is usually classified using
machine learning approach [28]. Such approach are able to estab-
lish relationships between data directly from the model data and
can represent both nonlinear and linear relationship [19]. Hence,
machine learning approach, such as artificial neural networks
(ANN), is useful in analyzing and classifying complex patterns. The
ability of ANN in studying and establishing relationship between
data of EMG  signals has been proven for upper limb movement
[29] and neuromuscular diseases [30]. Meanwhile, this statement
has not been explored for lower limb movement especially stance
and swing phases.

Apart from practicality, accuracy is also important in any calcu-
lation system. It is crucial to have the right and effective features
to ensure higher accuracy. Therefore, features of time domain (TD)
have been widely adopted in discriminate upper limb movements,
as calculation of features will then be based on raw EMG  time series,
eliminating the need for transformation [29,31,32,55]. It should be
noted that single and multiple feature sets will produce different
accuracies [32,33].

At the point this paper was written, this is the first attempt
on using EMG  signals to quantify stance and swing phases among
young, healthy subjects during normal gait events. It is hoped that
the end data will help in creating a system with acceptable, if not
high, accuracy in detecting stance and swing phases. Also, the pro-
posed system will adopt some features of TD to represent EMG
signals for tibialis anterior (TA) and gastrocnemius medialis (mGas)
muscles. The features will also be computed into an ANN classi-
fier. Then, the performances of a single and combination of TD
features will be compared. The designed ANN with higher accu-
racy will be further evaluated with learned and unlearned data to
test its suitability with EMG  classification. Based on the stance and
swing phases characterised by the system, the timing of stance and
swing phases was identified and compared with footswitch data as
a validation.

2. Materials and methods

2.1. Data acquisition and processing

Eight healthy male subjects with age range from 23 to 26 years
old and height from 163 cm to 183 cm participated in this study.
The subjects had no history of physiological or nerve injury that
may  have affected gait.

As force sensing resistors (FSR) system showed significantly
lower errors than the accelerometer system [34], the footswitch
based reference was widely adopted in the identification of gait
events on other wearable sensors such as accelerometers [35,36],
gyroscopes [2,37–39], and IMU  [4]. Similarly, with the analysis of
EMG  signals, footswitch data determined the starting and ending
of stride as conducted in [18,40]. Thus, this study used footswitch
data as a reference.

Two  FSR were placed under the sole of their foot, beneath the
hallux and heel [41]. The footswitch data was  recorded using Load
Switch System (DKH, Japan) with activation force 0.3 N. Also, the
subjects were asked to perform dorsiflexion (upward movement
of foot at the ankle) and plantar flexion (bending the foot toward
plantar surface) to verify the precision of the on/off activation of
footswitches. This was to calibrate and ensure the accuracy of the
footswitches’ outputs, as these outputs will become the reference
signals. The stance phase began with the initial foot contact. It was
the Heel Strike (HS), as the pressure at the heel increases. Mean-
while, foot contact, or toe off (TO), ended when swing phase began.
In this study, HS was  when the heel touched the ground, while TO
was when there was  a termination of hallux from the ground.

The detection of EMG  signals on the surface were done by plac-
ing double-sided adhesive skin interfaces electrodes of EMG  sensor
on TA and mGas muscles. This was derived from the Surface Elec-
tromyography for Non-Invasive Assessment, with a reference to
electrode at the patella. It is worth noting that the electrodes con-
tact point, or in other words, the skin, was shaved and then cleansed
with alcohol. It was  to reduce impedance on the skin surface. Apart
from that, the online processing of surface EMG signals were done
using a two-channeled EMG  device (Nihon Kohden, Japan) with
30 mm  electrode diameter, 10 mm inter-electrode distance, input
impedance >1015� and input referred noise 1.2 �V. The device was
amplified using a multichannel amplifier with bandwidth filter-
ing ranging from 15 to 1000 Hz. The raw EMG  signals were then
high-passed and low-passed filtered with the second order Butter-
worth at 20 Hz and 500 Hz respectively to minimize interference
and unwanted line frequencies (50/60 Hz) [28].

Afterwards, a 64Ch analog-to-digital converters (Model ZO-928,
NAC, Japan) was connected to EMG  signals and footswitch data. This
is shown in Fig. 1.

On top of that, the EMG  signals and footswitch data were sam-
pled using Cortex software at a rate of 1000 Hz. Fig. 2 represents an
example of EMG  signals recorded from TA and mGas muscles for
one subject. The subjects were then asked to walk bare-footed at
their self-selected pace on a treadmill that has been set to a speed
of 3 km/h for 60 s.

Next, MATLAB software was used to design an algorithm to rec-
ognize the timings of HO, TS, and EMG  signals on TA and mGas
muscles. With reference to footswitch data, HS and TO timings were
recorded as 1, while anything other than those two were recorded
as 0. The values formed the base for the segmentation of EMG
signals on TA and mGas muscles. The whole data of EMG  signals
were then divided into overlapping segments. They are 200 data
value long with a one point delay to the next segment. Such length
contained enough information to estimate EMG  signals’ pattern.

On a related note, feature extraction is an effective and impor-
tant method in extracting meaningful information from EMG
signals. As mentioned before, features in TD are widely used to solve
pattern recognition problems.

MAV  not only one of the most popular features used in EMG
signals analysis [42], but also recommended Phinyomark et al. sug-
gested MAV  features based on energy information method [31].
This result had supported the combination of MAV  and WL pro-
posed by Oskoei et al. [32] using four channel of EMG  signals in
isometric contractions.

The TD features that were incorporated into this study were root
mean square (RMS), standard deviation (SD), mean absolute value
(MAV), integrated EMG  (IEMG), and waveform length (WL) [29,32].
The RMS, SD, MAV, IEMG, and WL  of TA muscles were assigned with
p1, p2, p3, p4, and p5 respectively. Meanwhile, p6, p7, p8, p9, and p10
represent RMS, SD, MAV, IEMG, and WL  of mGas muscles. Those
features were selected based on the study conducted by Nadzri et al.
for EMG  signals in isomteric contractions [43]. This study extends
the research for isotonic contractions and the variance features of
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