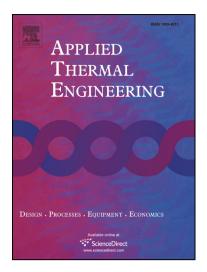
Accepted Manuscript

Super-Planckian thermal radiation enabled by coupled quasi-elliptic 2D black phosphorus plasmons

Jiadong Shen, Shu Guo, Xianglei Liu, Baoan Liu, Weitao Wu, Huan He


PII: S1359-4311(18)32854-0

DOI: https://doi.org/10.1016/j.applthermaleng.2018.08.081

Reference: ATE 12584

To appear in: Applied Thermal Engineering

Received Date: 8 May 2018
Revised Date: 6 August 2018
Accepted Date: 22 August 2018

Please cite this article as: J. Shen, S. Guo, X. Liu, B. Liu, W. Wu, H. He, Super-Planckian thermal radiation enabled by coupled quasi-elliptic 2D black phosphorus plasmons, *Applied Thermal Engineering* (2018), doi: https://doi.org/10.1016/j.applthermaleng.2018.08.081

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Submitted to Applied Thermal Engineering, May 8th, 2018, revision submitted on August 6th

Super-Planckian thermal radiation enabled by coupled quasi-elliptic 2D black phosphorus plasmons

Jiadong Shen¹, Shu Guo², Xianglei Liu^{1*}, Baoan Liu³, Weitao Wu⁴, Huan He⁵
1 School of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2 AECC Shenyang Engine Research Institute, Shenyang 110015, China 3 Precivision Technologies Inc., Pittsburgh 15212, USA

4 School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

5 State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China *Email address: xliu@nuaa.edu.cn

Abstract: New-joined 2D layered material – black phosphorus (BP), due to strong in-plane structural anisotropy, has exhibited exotic electrical, optical, and thermal properties while its thermal radiative properties are still largely unexplored. Here, we investigate near-field thermal radiation of mono/multilayer BP, and find that monolayer BP can support three-order-of-magnitude enhanced heat exchange over blackbodies, even exceeding optimized graphene sheets by around 18.5%. We derive the dispersion relation of coupled anisotropic BP surface plasmon polaritons (SPPs), which is find to have a good agreement with the energy transmission contour of evanescent waves. The prominent thermal radiation rate thus can be attributed to the excitation of quasi-elliptic BP SPPs enabled by its unique structural anisotropy and doping. With increasing number of layers, near-field radiative heat flux decreases monotonously. The underlying mechanism lies in the increased imaginary part of optical conductivity but weak coupling with high-wavevector photons. This work helps elucidate the near-field thermal radiation mechanism of mono/multilayer BP, and paves the way for the application of emerging BP in noncontact thermal management and energy conversion.

Keywords: near-field thermal radiation, black phosphorus, quasi-elliptic surface plasmon polaritons, optical conductivity

Download English Version:

https://daneshyari.com/en/article/10127249

Download Persian Version:

https://daneshyari.com/article/10127249

<u>Daneshyari.com</u>