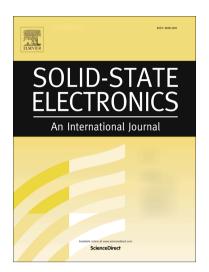
Accepted Manuscript

Numerical simulation of planar BaSi₂ based Schottky junction solar cells toward high efficiency

Lian Chen, Hai Chen, Quanrong Deng, Geming Wang, Shenggao Wang


PII: S0038-1101(18)30061-3

DOI: https://doi.org/10.1016/j.sse.2018.08.008

Reference: SSE 7463

To appear in: Solid-State Electronics

Received Date: 23 January 2018 Revised Date: 19 June 2018 Accepted Date: 22 August 2018

Please cite this article as: Chen, L., Chen, H., Deng, Q., Wang, G., Wang, S., Numerical simulation of planar BaSi₂ based Schottky junction solar cells toward high efficiency, *Solid-State Electronics* (2018), doi: https://doi.org/10.1016/j.sse.2018.08.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Numerical simulation of planar BaSi₂ based Schottky junction solar cells toward high efficiency

Lian Chen^a, Hai Chen^a, Quanrong Deng^{a,b*}, Geming Wang^a, Shenggao Wang^a

Abstract

The theoretical and experimental studies on $BaSi_2/Si$ heterojunction solar cells have demonstrated the great potential in utilization of $BaSi_2$ material as light absorption layer for developing high efficiency solar cells with low cost. In addition to $BaSi_2/Si$ heterojunction solar cells, $BaSi_2$ based Schottky junction solar cells could also be achieved by coupling n-type or p-type $BaSi_2$ with suitable metal electrode. In this work, $BaSi_2$ based Schottky junction solar cells were simulated with the program AMPS (analysis of microelectronic and photonic structures)-1D in order to thoroughly understand the mechanism for further improvement in conversion efficiency. Simulation results demonstrated that a simpler structure of metal/n-BaSi₂ Schottky junction solar cell with thickness of 2000 nm can reach high conversion efficiency up to 24.12% and 25.28% for N_D =1×10¹⁵ cm⁻³ and N_D =1×10¹⁸ cm⁻³ respectively, being comparable to $BaSi_2/Si$ heterojunction solar cell. Contact barrier height, illumination condition, as well as defect level of metal/n-BaSi₂ Schottky junction solar cell were also identified to significantly influence the device performance.

Keywords: Schottky junction solar cells; BaSi₂; AMPS; Device simulation

1. Introduction

Solar energy harvesting and utilization has been proven to be one of the most feasible solutions to resolve worldwide energy crisis and associated environmental problems brought by fossil fuel. In order to achieve cost-effective photovoltaic systems instead of crystal Si solar cells, researchers around the word have begun to search for new semiconducting materials with high optical absorption coefficients, suitable band gap and photoelectronic properties. Semiconducting material BaSi₂ is recognized as a potential alternative due to its high absorption coefficient over 3 $\times 10^4$ cm⁻¹ at 1.5 eV as compared with c-Si [1,2,3,4], and suitable band gap of 1.3 eV [3,5] close to the optimum band gap of 1.4 eV to match the spectrum of solar illumination [5,6]. Besides, BaSi₂ is non-toxic and rich in the earth's crust, together with its narrow band gap and high absorption coefficient, making it a promising candidate for low cost and environmental friendly thin film solar cells. Orthorhombic crystal structure BaSi2 thin films have been successively fabricated on Si substrates using molecular beam epitaxy (MBE) [7,8,9,10], radio-frequency magnetron sputtering [11] and vacuum evaporation [12]. The undoped BaSi2 is an n-type semiconductor with electron concentration of approximately 5×10^{15} cm⁻³ [5, 13], long minority-carrier diffusion length reaching 10 μ m and long lifetime greater than 10 μ s [14,15,16]. Through Sb, Ga or Cu doping, the electron concentration of n-type BaSi₂ could reach 10¹⁶~10²⁰

^a Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan, 430205, China

^b State Centre for International Cooperation on Designer Low-Carbon and Environmental Materials, Zhengzhou University, Zhengzhou 450001, China

^{*} Corresponding author. E-mail address: quanrongdeng@wit.edu.cn

Download English Version:

https://daneshyari.com/en/article/10127494

Download Persian Version:

https://daneshyari.com/article/10127494

<u>Daneshyari.com</u>